1,715 research outputs found

    Embeddings for word sense disambiguation: an evaluation study

    Get PDF
    Recent years have seen a dramatic growth in the popularity of word embeddings mainly owing to their ability to capture semantic information from massive amounts of textual content. As a result, many tasks in Natural Language Processing have tried to take advantage of the potential of these distributional models. In this work, we study how word embeddings can be used in Word Sense Disambiguation, one of the oldest tasks in Natural Language Processing and Artificial Intelligence. We propose different methods through which word embeddings can be leveraged in a state-of-the-art supervised WSD system architecture, and perform a deep analysis of how different parameters affect performance. We show how a WSD system that makes use of word embeddings alone, if designed properly, can provide significant performance improvement over a state-of-the-art WSD system that incorporates several standard WSD features

    A Word Sense Disambiguation Model for Amharic Words using Semi-Supervised Learning Paradigm

    Get PDF
    The main objective of this research was to design a WSD (word sense disambiguation) prototype model for Amharic words using semi-supervised learning method to extract training sets which minimizes the amount of the required human intervention and it can produce considerable improvement in learning accuracy. Due to the unavailability of Amharic word net, only five words were selected. These words were atena (አጠና), derese (ደረሰ), tenesa (ተነሳ), bela (በላ) and ale (አለ). A separate data sets using five ambiguous words were prepared for the development of this Amharic WSD prototype. The final classification task was done on fully labelled training set using Adaboost, bagging, and AD tree classification algorithms on WEKA package.Keywords: Ambiguity Bootstrapping Word Sense disambiguatio

    Disambiguating Clinical Abbreviations using Pre-trained Word Embeddings

    Get PDF
    Thanks to Palestine Technical University-Kadoorie and Deep EMR project(TIN2017-87548-C2-1-R)for partially funding this work

    Entity-centric knowledge discovery for idiosyncratic domains

    Get PDF
    Technical and scientific knowledge is produced at an ever-accelerating pace, leading to increasing issues when trying to automatically organize or process it, e.g., when searching for relevant prior work. Knowledge can today be produced both in unstructured (plain text) and structured (metadata or linked data) forms. However, unstructured content is still themost dominant formused to represent scientific knowledge. In order to facilitate the extraction and discovery of relevant content, new automated and scalable methods for processing, structuring and organizing scientific knowledge are called for. In this context, a number of applications are emerging, ranging fromNamed Entity Recognition (NER) and Entity Linking tools for scientific papers to specific platforms leveraging information extraction techniques to organize scientific knowledge. In this thesis, we tackle the tasks of Entity Recognition, Disambiguation and Linking in idiosyncratic domains with an emphasis on scientific literature. Furthermore, we study the related task of co-reference resolution with a specific focus on named entities. We start by exploring Named Entity Recognition, a task that aims to identify the boundaries of named entities in textual contents. We propose a newmethod to generate candidate named entities based on n-gram collocation statistics and design several entity recognition features to further classify them. In addition, we show how the use of external knowledge bases (either domain-specific like DBLP or generic like DBPedia) can be leveraged to improve the effectiveness of NER for idiosyncratic domains. Subsequently, we move to Entity Disambiguation, which is typically performed after entity recognition in order to link an entity to a knowledge base. We propose novel semi-supervised methods for word disambiguation leveraging the structure of a community-based ontology of scientific concepts. Our approach exploits the graph structure that connects different terms and their definitions to automatically identify the correct sense that was originally picked by the authors of a scientific publication. We then turn to co-reference resolution, a task aiming at identifying entities that appear using various forms throughout the text. We propose an approach to type entities leveraging an inverted index built on top of a knowledge base, and to subsequently re-assign entities based on the semantic relatedness of the introduced types. Finally, we describe an application which goal is to help researchers discover and manage scientific publications. We focus on the problem of selecting relevant tags to organize collections of research papers in that context. We experimentally demonstrate that the use of a community-authored ontology together with information about the position of the concepts in the documents allows to significantly increase the precision of tag selection over standard methods

    Semi-Supervised Named Entity Recognition:\ud Learning to Recognize 100 Entity Types with Little Supervision\ud

    Get PDF
    Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as proper names, biological species, and temporal expressions. There has been growing interest in this field of research since the early 1990s. In this thesis, we document a trend moving away from handcrafted rules, and towards machine learning approaches. Still, recent machine learning approaches have a problem with annotated data availability, which is a serious shortcoming in building and maintaining large-scale NER systems. \ud \ud In this thesis, we present an NER system built with very little supervision. Human supervision is indeed limited to listing a few examples of each named entity (NE) type. First, we introduce a proof-of-concept semi-supervised system that can recognize four NE types. Then, we expand its capacities by improving key technologies, and we apply the system to an entire hierarchy comprised of 100 NE types. \ud \ud Our work makes the following contributions: the creation of a proof-of-concept semi-supervised NER system; the demonstration of an innovative noise filtering technique for generating NE lists; the validation of a strategy for learning disambiguation rules using automatically identified, unambiguous NEs; and finally, the development of an acronym detection algorithm, thus solving a rare but very difficult problem in alias resolution. \ud \ud We believe semi-supervised learning techniques are about to break new ground in the machine learning community. In this thesis, we show that limited supervision can build complete NER systems. On standard evaluation corpora, we report performances that compare to baseline supervised systems in the task of annotating NEs in texts. \u

    Handling Homographs in Neural Machine Translation

    Full text link
    Homographs, words with different meanings but the same surface form, have long caused difficulty for machine translation systems, as it is difficult to select the correct translation based on the context. However, with the advent of neural machine translation (NMT) systems, which can theoretically take into account global sentential context, one may hypothesize that this problem has been alleviated. In this paper, we first provide empirical evidence that existing NMT systems in fact still have significant problems in properly translating ambiguous words. We then proceed to describe methods, inspired by the word sense disambiguation literature, that model the context of the input word with context-aware word embeddings that help to differentiate the word sense be- fore feeding it into the encoder. Experiments on three language pairs demonstrate that such models improve the performance of NMT systems both in terms of BLEU score and in the accuracy of translating homographs.Comment: NAACL201
    corecore