465 research outputs found

    Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation

    Get PDF
    Radiomics analysis has had remarkable progress along with advances in medical imaging, most notability in central nervous system malignancies. Radiomics refers to the extraction of a large number of quantitative features that describe the intensity, texture and geometrical characteristics attributed to the tumor radiographic data. These features have been used to build predictive models for diagnosis, prognosis, and therapeutic response. Such models are being combined with clinical, biological, genetics and proteomic features to enhance reproducibility. Broadly, the four steps necessary for radiomic analysis are: (1) image acquisition, (2) segmentation or labeling, (3) feature extraction, and (4) statistical analysis. Major methodological challenges remain prior to clinical implementation. Essential steps include: adoption of an optimized standard imaging process, establishing a common criterion for performing segmentation, fully automated extraction of radiomic features without redundancy, and robust statistical modeling validated in the prospective setting. This review walks through these steps in detail, as it pertains to high grade gliomas. The impact on precision medicine will be discussed, as well as the challenges facing clinical implementation of radiomic in the current management of glioblastoma

    Clinical applications of TSPO PET for glioma imaging: current evidence and future perspective a systematic review

    Get PDF
    Our aim was to provide a comprehensive overview of the existing literature concerning the clinical applications of positron emission computed tomography (PET) with radiopharmaceuticals targeting the translocator protein (TSPO) in gliomas. A literature search for studies about TSPO PET in the last 10 years (from 2013 to February 2023) was carried out on PubMed, Scopus, and Web of Science using the following keywords: "PET" AND "Gliomas" AND "TSPO". The Critical Appraisal Skills Program checklist for diagnostic test studies was used for testing the quality of selected papers. Ten articles were selected, encompassing 314 glioma patients submitted to PET/CT (9/10) or PET/MRI (1/10) with TSPO ligands. Among the various available TSPO tracers, the most frequently used was the third-generation ligand, [F-18]-GE-180. TSPO PET results were useful to identify anaplastic transformation in gliomas and for the prognostic stratification of patients bearing homogeneous genetic alterations. When compared to amino-acid PET, TSPO PET with [F-18]-GE-180 presented superior image quality and provided larger and only partially overlapping PET-based volumes. Although biased by some issues (i.e., small sample size, most of the studies coming from the same country), preliminary applications of TSPO PET were encouraging. Further studies are needed to define implications in clinical practice and shape the role of TSPO PET for patients' selection for potential TSPO-targeted molecular therapies

    Developing and Applying CAD-generated Image Markers to Assist Disease Diagnosis and Prognosis Prediction

    Get PDF
    Developing computer-aided detection and/or diagnosis (CAD) schemes has been an active research topic in medical imaging informatics (MII) with promising results in assisting clinicians in making better diagnostic and/or clinical decisions in the last two decades. To build robust CAD schemes, we need to develop state-of-the-art image processing and machine learning (ML) algorithms to optimize each step in the CAD pipeline, including detection and segmentation of the region of interest, optimal feature generation, followed by integration to ML classifiers. In my dissertation, I conducted multiple studies investigating the feasibility of developing several novel CAD schemes in the field of medicine concerning different purposes. The first study aims to investigate how to optimally develop a CAD scheme of contrast-enhanced digital mammography (CEDM) images to classify breast masses. CEDM includes both low energy (LE) and dual-energy subtracted (DES) images. A CAD scheme was applied to segment mass regions depicting LE and DES images separately. Optimal segmentation results generated from DES images were also mapped to LE images or vice versa. After computing image features, multilayer perceptron-based ML classifiers integrated with a correlation-based feature subset evaluator and leave-one-case-out cross-validation method were built to classify mass regions. The study demonstrated that DES images eliminated the overlapping effect of dense breast tissue, which helps improve mass segmentation accuracy. By mapping mass regions segmented from DES images to LE images, CAD yields significantly improved performance. The second study aims to develop a new quantitative image marker computed from the pre-intervention computed tomography perfusion (CTP) images and evaluate its feasibility to predict clinical outcome among acute ischemic stroke (AIS) patients undergoing endovascular mechanical thrombectomy after diagnosis of large vessel occlusion. A CAD scheme is first developed to pre-process CTP images of different scanning series for each study case, perform image segmentation, quantify contrast-enhanced blood volumes in bilateral cerebral hemispheres, and compute image features related to asymmetrical cerebral blood flow patterns based on the cumulative cerebral blood flow curves of two hemispheres. Next, image markers based on a single optimal feature and ML models fused with multi-features are developed and tested to classify AIS cases into two classes of good and poor prognosis based on the Modified Rankin Scale. The study results show that ML model trained using multiple features yields significantly higher classification performance than the image marker using the best single feature (p<0.01). This study demonstrates the feasibility of developing a new CAD scheme to predict the prognosis of AIS patients in the hyperacute stage, which has the potential to assist clinicians in optimally treating and managing AIS patients. The third study aims to develop and test a new CAD scheme to predict prognosis in aneurysmal subarachnoid hemorrhage (aSAH) patients using brain CT images. Each patient had two sets of CT images acquired at admission and prior to discharge. CAD scheme was applied to segment intracranial brain regions into four subregions, namely, cerebrospinal fluid (CSF), white matter (WM), gray matter (GM), and extraparenchymal blood (EPB), respectively. CAD then computed nine image features related to 5 volumes of the segmented sulci, EPB, CSF, WM, GM, and four volumetrical ratios to sulci. Subsequently, 16 ML models were built using multiple features computed either from CT images acquired at admission or prior to discharge to predict eight prognosis related parameters. The results show that ML models trained using CT images acquired at admission yielded higher accuracy to predict short-term clinical outcomes, while ML models trained using CT images acquired prior to discharge had higher accuracy in predicting long-term clinical outcomes. Thus, this study demonstrated the feasibility of predicting the prognosis of aSAH patients using new ML model-generated quantitative image markers. The fourth study aims to develop and test a new interactive computer-aided detection (ICAD) tool to quantitatively assess hemorrhage volumes. After loading each case, the ICAD tool first segments intracranial brain volume, performs CT labeling of each voxel. Next, contour-guided image-thresholding techniques based on CT Hounsfield Unit are used to estimate and segment hemorrhage-associated voxels (ICH). Next, two experienced neurology residents examine and correct the markings of ICH categorized into either intraparenchymal hemorrhage (IPH) or intraventricular hemorrhage (IVH) to obtain the true markings. Additionally, volumes and maximum two-dimensional diameter of each sub-type of hemorrhage are also computed for understanding ICH prognosis. The performance to segment hemorrhage regions between semi-automated ICAD and the verified neurology residents’ true markings is evaluated using dice similarity coefficient (DSC). The data analysis results in the study demonstrate that the new ICAD tool enables to segment and quantify ICH and other hemorrhage volumes with higher DSC. Finally, the fifth study aims to bridge the gap between traditional radiomics and deep learning systems by comparing and assessing these two technologies in classifying breast lesions. First, one CAD scheme is applied to segment lesions and compute radiomics features. In contrast, another scheme applies a pre-trained residual net architecture (ResNet50) as a transfer learning model to extract automated features. Next, the principal component algorithm processes both initially computed radiomics and automated features to create optimal feature vectors. Then, several support vector machine (SVM) classifiers are built using the optimized radiomics or automated features. This study indicates that (1) CAD built using only deep transfer learning yields higher classification performance than the traditional radiomic-based model, (2) SVM trained using the fused radiomics and automated features does not yield significantly higher AUC, and (3) radiomics and automated features contain highly correlated information in lesion classification. In summary, in all these studies, I developed and investigated several key concepts of CAD pipeline, including (i) pre-processing algorithms, (ii) automatic detection and segmentation schemes, (iii) feature extraction and optimization methods, and (iv) ML and data analysis models. All developed CAD models are embedded with interactive and visually aided graphical user interfaces (GUIs) to provide user functionality. These techniques present innovative approaches for building quantitative image markers to build optimal ML models. The study results indicate the underlying CAD scheme's potential application to assist radiologists in clinical settings for their assessments in diagnosing disease and improving their overall performance

    The Role of Arterial Spin Labelling (ASL) in Classification of Primary Adult Gliomas

    Get PDF
    Currently, the histological biopsy is the gold standard for classifying gliomas using the most recent histomolecular features. However, this process is both invasive and challenging, mainly when the lesion is in eloquent brain regions. Considering the complex interaction between the presence of the isocitrate dehydrogenase (IDH)-mutation, the upregulation of the hypoxia-induced factor (HIF), the neo-angiogenesis and the increased cellularity, perfusion MRI may be used indirectly for gliomas staging and further to predict the presence of key mutations, such as IDH. Recently, several studies have reported the subsidiary role of perfusion MRI in the prediction of gliomas histomolecular class. The three most common perfusion MRI methods are dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labelling (ASL). Both DSC and DCE use exogenous contrast agent (CA) while ASL uses magnetically labelled blood water as an inherently diffusible tracer. ASL has begun to feature more prominently in clinical settings, as this method eliminates the need for CA and facilitates quantification of absolute cerebral blood flow (CBF). As a non-invasive, CA-free test, it can also be performed repeatedly where necessary. This makes it ideal for vulnerable patients, e.g. post-treatment oncological patients, who have reduced tolerance for high rate contrast injections and those suffering from renal insufficiency. This thesis performed a systematic review and critical appraisal of the existing ASL techniques for brain perfusion estimation, followed by a further systematic review and meta-analysis of the published studies, which have quantitatively assessed the diagnostic performance of ASL for grading preoperative adult gliomas. The repeatability of absolute tumour blood flow (aTBF) and relative TBF (rTBF) ASL-derived measurements were estimated to investigate the reliability of these ASL biomarkers in the clinical routine. Finally, utilising the radiomics pipeline analysis, the added diagnostic performance of ASL compared with CA-based MRI perfusion techniques, including DSC and DCE, and diffusion-weighted imaging (DWI) was investigated for glioma class prediction according to the WHO-2016 classification

    Biomedical signal analysis in automatic classification problems

    Full text link
    A lo largo de la última década hemos asistido a un desarrollo sin precedentes de las tecnologías de la salud. Los avances en la informatización, la creación de redes, las técnicas de imagen, la robótica, las micro/nano tecnologías, y la genómica, han contribuido a aumentar significativamente la cantidad y diversidad de información al alcance del personal clínico para el diagnóstico, pronóstico, tratamiento y seguimiento de los pacientes. Este aumento en la cantidad y diversidad de datos clínicos requiere del continuo desarrollo de técnicas y metodologías capaces de integrar estos datos, procesarlos, y dar soporte en su interpretación de una forma robusta y eficiente. En este contexto, esta Tesis se focaliza en el análisis y procesado de señales biomédicas y su uso en problemas de clasificación automática. Es decir, se focaliza en: el diseño e integración de algoritmos para el procesado automático de señales biomédicas, el desarrollo de nuevos métodos de extracción de características para señales, la evaluación de compatibilidad entre señales biomédicas, y el diseño de modelos de clasificación para problemas clínicos específicos. En la mayoría de casos contenidos en esta Tesis, estos problemas se sitúan en el ámbito de los sistemas de apoyo a la decisión clínica, es decir, de sistemas computacionales que proporcionan conocimiento experto para la decisión en el diagnóstico, pronóstico y tratamiento de los pacientes. Una de las principales contribuciones de esta tesis consiste en la evaluación de la compatibilidad entre espectros de resonancia magnética (ERM) obtenidos mediante dos tecnologías de escáneres de resonancia magnética coexistentes en la actualidad (escáneres de 1.5T y de 3T). Esta compatibilidad se evalúa en el contexto de clasificación automática de tumores cerebrales. Los resultados obtenidos en este trabajo sugieren que los clasificadores existentes basados en datos de ERM de 1.5T pueden ser aplicables a casos obtenidos con la nueva tecnologFuster García, E. (2012). Biomedical signal analysis in automatic classification problems [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17176Palanci

    An Artificial Intelligence Approach to Tumor Volume Delineation

    Get PDF
    Postponed access: the file will be accessible after 2023-11-14Masteroppgave for radiograf/bioingeniørRABD395MAMD-HELS

    Quantitative chemical imaging: A top-down systems pathology approach to predict colon cancer patient survival

    Get PDF
    Colon cancer is the second deadliest cancer, affecting the quality of life in older patients. Prognosis is useful in developing an informed disease management strategy, which can improve mortality as well as patient comfort. Morphometric assessment provides diagnosis, grade, and stage information. However, it is subjective, requires multi-step sample processing, and annotations by pathologists. In addition, morphometric techniques offer minimal molecular information that can be crucial in determining prognosis. The interaction of the tumor with its surrounding stroma, comprised of several biomolecular factors and cells is a critical determinant of the behavior of the disease. To evaluate this interaction objectively, we need biomolecular profiling in spatially specific context. In this work, we achieved this by analyzing tissue microarrays using infrared spectroscopic imaging. We developed supervised classification algorithms that were used to reliably segment colon tissue into histological components, including differentiation of normal and desmoplastic stroma. Thus, infrared spectroscopic imaging enabled us to map the stromal changes around the tumor. This supervised classification achieved >0.90 area under the curve of the receiver operating characteristic curve for pixel level classification. Using these maps, we sought to define evaluation criteria to assess the segmented colon images to determine prognosis. We measured the interaction of tumor with the surrounding stroma containing activated fibroblast in the form of mathematical functions that took into account the structure of tumor and the prevalence of reactive stroma. Using these functions, we found that the interaction effect of large tumor size in the presence of a high density of activated fibroblasts provided patients with worse outcome. The overall 6-year probability of survival in patient groups that were classified as “low-risk” was 0.73 whereas in patients that were “high-risk” was 0.54 at p-value <0.0003. Remarkably, the risk score defined in this work was independent of patient risk assessed by stage and grade of the tumor. Thus, objective evaluation of prognosis, which adds to the current clinical regimen, was achieved by a completely automated analysis of unstained patient tissue to determine the risk of 6-year death. In this work, we demonstrate that quantitative chemical imaging using infrared spectroscopic imaging is an effective method to measure tumor-tumor microenvironment interactions. As a top-down systems pathology approach, our work integrated morphometry based spatial constraints and biochemistry based stromal changes to identify markers that gave us mechanistic insights into the tumor behavior. Our work shows that while the tumor microenvironment changes are prognostic, an interaction model that takes into account both the extent of microenvironment modifications, as well as the tumor morphology, is a better predictor of prognosis. Finally, we also developed automated tumor grade determination using deep learning based infrared image analysis. Thus, the computational models developed in this work provide an objective, processing-free and automated way to predict tumor behavior

    Mri-Based Radiomics in Breast Cancer:Optimization and Prediction

    Get PDF
    corecore