1,372 research outputs found

    Temporal Model Adaptation for Person Re-Identification

    Full text link
    Person re-identification is an open and challenging problem in computer vision. Majority of the efforts have been spent either to design the best feature representation or to learn the optimal matching metric. Most approaches have neglected the problem of adapting the selected features or the learned model over time. To address such a problem, we propose a temporal model adaptation scheme with human in the loop. We first introduce a similarity-dissimilarity learning method which can be trained in an incremental fashion by means of a stochastic alternating directions methods of multipliers optimization procedure. Then, to achieve temporal adaptation with limited human effort, we exploit a graph-based approach to present the user only the most informative probe-gallery matches that should be used to update the model. Results on three datasets have shown that our approach performs on par or even better than state-of-the-art approaches while reducing the manual pairwise labeling effort by about 80%

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Contribution to Graph-based Manifold Learning with Application to Image Categorization.

    Get PDF
    122 pLos algoritmos de aprendizaje de variedades basados en grafos (Graph,based manifold) son técnicas que han demostrado ser potentes herramientas para la extracción de características y la reducción de la dimensionalidad en los campos de reconomiento de patrones, visión por computador y aprendizaje automático. Estos algoritmos utilizan información basada en las similitudes de pares de muestras y del grafo ponderado resultante para revelar la estructura geométrica intrínseca de la variedad
    corecore