25,901 research outputs found

    Strength is in numbers: Can concordant artificial listeners improve prediction of emotion from speech?

    Get PDF
    Humans can communicate their emotions by modulating facial expressions or the tone of their voice. Albeit numerous applications exist that enable machines to read facial emotions and recognize the content of verbal messages, methods for speech emotion recognition are still in their infancy. Yet, fast and reliable applications for emotion recognition are the obvious advancement of present 'intelligent personal assistants', and may have countless applications in diagnostics, rehabilitation and research. Taking inspiration from the dynamics of human group decision-making, we devised a novel speech emotion recognition system that applies, for the first time, a semi-supervised prediction model based on consensus. Three tests were carried out to compare this algorithm with traditional approaches. Labeling performances relative to a public database of spontaneous speeches are reported. The novel system appears to be fast, robust and less computationally demanding than traditional methods, allowing for easier implementation in portable voice-analyzers (as used in rehabilitation, research, industry, etc.) and for applications in the research domain (such as real-time pairing of stimuli to participants' emotional state, selective/differential data collection based on emotional content, etc.)

    Semi-Supervised Speech Emotion Recognition with Ladder Networks

    Full text link
    Speech emotion recognition (SER) systems find applications in various fields such as healthcare, education, and security and defense. A major drawback of these systems is their lack of generalization across different conditions. This problem can be solved by training models on large amounts of labeled data from the target domain, which is expensive and time-consuming. Another approach is to increase the generalization of the models. An effective way to achieve this goal is by regularizing the models through multitask learning (MTL), where auxiliary tasks are learned along with the primary task. These methods often require the use of labeled data which is computationally expensive to collect for emotion recognition (gender, speaker identity, age or other emotional descriptors). This study proposes the use of ladder networks for emotion recognition, which utilizes an unsupervised auxiliary task. The primary task is a regression problem to predict emotional attributes. The auxiliary task is the reconstruction of intermediate feature representations using a denoising autoencoder. This auxiliary task does not require labels so it is possible to train the framework in a semi-supervised fashion with abundant unlabeled data from the target domain. This study shows that the proposed approach creates a powerful framework for SER, achieving superior performance than fully supervised single-task learning (STL) and MTL baselines. The approach is implemented with several acoustic features, showing that ladder networks generalize significantly better in cross-corpus settings. Compared to the STL baselines, the proposed approach achieves relative gains in concordance correlation coefficient (CCC) between 3.0% and 3.5% for within corpus evaluations, and between 16.1% and 74.1% for cross corpus evaluations, highlighting the power of the architecture

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    Learning Representations of Emotional Speech with Deep Convolutional Generative Adversarial Networks

    Full text link
    Automatically assessing emotional valence in human speech has historically been a difficult task for machine learning algorithms. The subtle changes in the voice of the speaker that are indicative of positive or negative emotional states are often "overshadowed" by voice characteristics relating to emotional intensity or emotional activation. In this work we explore a representation learning approach that automatically derives discriminative representations of emotional speech. In particular, we investigate two machine learning strategies to improve classifier performance: (1) utilization of unlabeled data using a deep convolutional generative adversarial network (DCGAN), and (2) multitask learning. Within our extensive experiments we leverage a multitask annotated emotional corpus as well as a large unlabeled meeting corpus (around 100 hours). Our speaker-independent classification experiments show that in particular the use of unlabeled data in our investigations improves performance of the classifiers and both fully supervised baseline approaches are outperformed considerably. We improve the classification of emotional valence on a discrete 5-point scale to 43.88% and on a 3-point scale to 49.80%, which is competitive to state-of-the-art performance
    • …
    corecore