7,771 research outputs found

    A semi-supervised approach to visualizing and manipulating overlapping communities

    Get PDF
    When evaluating a network topology, occasionally data structures cannot be segmented into absolute, heterogeneous groups. There may be a spectrum to the dataset that does not allow for this hard clustering approach and may need to segment using fuzzy/overlapping communities or cliques. Even to this degree, when group members can belong to multiple cliques, there leaves an ever present layer of doubt, noise, and outliers caused by the overlapping clustering algorithms. These imperfections can either be corrected by an expert user to enhance the clustering algorithm or to preserve their own mental models of the communities. Presented is a visualization that models overlapping community membership and provides an interactive interface to facilitate a quick and efficient means of both sorting through large network topologies and preserving the user's mental model of the structure. © 2013 IEEE

    Graph Learning and Its Applications: A Holistic Survey

    Full text link
    Graph learning is a prevalent domain that endeavors to learn the intricate relationships among nodes and the topological structure of graphs. These relationships endow graphs with uniqueness compared to conventional tabular data, as nodes rely on non-Euclidean space and encompass rich information to exploit. Over the years, graph learning has transcended from graph theory to graph data mining. With the advent of representation learning, it has attained remarkable performance in diverse scenarios, including text, image, chemistry, and biology. Owing to its extensive application prospects, graph learning attracts copious attention from the academic community. Despite numerous works proposed to tackle different problems in graph learning, there is a demand to survey previous valuable works. While some researchers have perceived this phenomenon and accomplished impressive surveys on graph learning, they failed to connect related objectives, methods, and applications in a more coherent way. As a result, they did not encompass current ample scenarios and challenging problems due to the rapid expansion of graph learning. Different from previous surveys on graph learning, we provide a holistic review that analyzes current works from the perspective of graph structure, and discusses the latest applications, trends, and challenges in graph learning. Specifically, we commence by proposing a taxonomy from the perspective of the composition of graph data and then summarize the methods employed in graph learning. We then provide a detailed elucidation of mainstream applications. Finally, based on the current trend of techniques, we propose future directions.Comment: 20 pages, 7 figures, 3 table
    • …
    corecore