848 research outputs found

    Embeddings for word sense disambiguation: an evaluation study

    Get PDF
    Recent years have seen a dramatic growth in the popularity of word embeddings mainly owing to their ability to capture semantic information from massive amounts of textual content. As a result, many tasks in Natural Language Processing have tried to take advantage of the potential of these distributional models. In this work, we study how word embeddings can be used in Word Sense Disambiguation, one of the oldest tasks in Natural Language Processing and Artificial Intelligence. We propose different methods through which word embeddings can be leveraged in a state-of-the-art supervised WSD system architecture, and perform a deep analysis of how different parameters affect performance. We show how a WSD system that makes use of word embeddings alone, if designed properly, can provide significant performance improvement over a state-of-the-art WSD system that incorporates several standard WSD features

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Two knowledge-based methods for High-Performance Sense Distribution Learning

    Get PDF
    Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in sense distribution learning and the strongest baselines for the most frequent sense in multiple languages and on domain-specific test sets. Our sense distributions are available at http://trainomatic.org

    Knowledge-based approaches to producing large-scale training data from scratch for Word Sense Disambiguation and Sense Distribution Learning

    Get PDF
    Communicating and understanding each other is one of the most important human abilities. As humans, in fact, we can easily assign the correct meaning to the ambiguous words in a text, while, at the same time, being able to abstract, summarise and enrich its content with new information that we learned somewhere else. On the contrary, machines rely on formal languages which do not leave space to ambiguity hence being easy to parse and understand. Therefore, to fill the gap between humans and machines and enabling the latter to better communicate with and comprehend its sentient counterpart, in the modern era of computer-science's much effort has been put into developing Natural Language Processing (NLP) approaches which aim at understanding and handling the ambiguity of the human language. At the core of NLP lies the task of correctly interpreting the meaning of each word in a given text, hence disambiguating its content exactly as a human would do. Researchers in the Word Sense Disambiguation (WSD) field address exactly this issue by leveraging either knowledge bases, i.e. graphs where nodes are concept and edges are semantic relations among them, or manually-annotated datasets for training machine learning algorithms. One common obstacle is the knowledge acquisition bottleneck problem, id est, retrieving or generating semantically-annotated data which are necessary to build both semantic graphs or training sets is a complex task. This phenomenon is even more serious when considering languages other than English where resources to generate human-annotated data are scarce and ready-made datasets are completely absent. With the advent of deep learning this issue became even more serious as more complex models need larger datasets in order to learn meaningful patterns to solve the task. Another critical issue in WSD, as well as in other machine-learning-related fields, is the domain adaptation problem, id est, performing the same task in different application domains. This is particularly hard when dealing with word senses, as, in fact, they are governed by a Zipfian distribution; hence, by slightly changing the application domain, a sense might become very frequent even though it is very rare in the general domain. For example the geometric sense of plane is very frequent in a corpus made of math books, while it is very rare in a general domain dataset. In this thesis we address both these problems. Inter alia, we focus on relieving the burden of human annotations in Word Sense Disambiguation thus enabling the automatic construction of high-quality sense-annotated dataset not only for English, but especially for other languages where sense-annotated data are not available at all. Furthermore, recognising in word-sense distribution one of the main pitfalls for WSD approaches, we also alleviate the dependency on most frequent sense information by automatically inducing the word-sense distribution in a given text of raw sentences. In the following we propose a language-independent and automatic approach to generating semantic annotations given a collection of sentences, and then introduce two methods for the automatic inference of word-sense distributions. Finally, we combine the two kind of approaches to build a semantically-annotated dataset that reflect the sense distribution which we automatically infer from the target text

    Embedding Words and Senses Together via Joint Knowledge-Enhanced Training

    Get PDF
    Word embeddings are widely used in Nat-ural Language Processing, mainly due totheir success in capturing semantic infor-mation from massive corpora. However,their creation process does not allow thedifferent meanings of a word to be auto-matically separated, as it conflates theminto a single vector. We address this issueby proposing a new model which learnsword and sense embeddings jointly. Ourmodel exploits large corpora and knowl-edge from semantic networks in order toproduce a unified vector space of wordand sense embeddings. We evaluate themain features of our approach both qual-itatively and quantitatively in a variety oftasks, highlighting the advantages of theproposed method in comparison to state-of-the-art word- and sense-based models
    • …
    corecore