30,933 research outputs found

    Semi-Supervised Regression using Cluster Ensemble and Low-Rank Co-Association Matrix Decomposition under Uncertainties

    Full text link
    In this paper, we solve a semi-supervised regression problem. Due to the lack of knowledge about the data structure and the presence of random noise, the considered data model is uncertain. We propose a method which combines graph Laplacian regularization and cluster ensemble methodologies. The co-association matrix of the ensemble is calculated on both labeled and unlabeled data; this matrix is used as a similarity matrix in the regularization framework to derive the predicted outputs. We use the low-rank decomposition of the co-association matrix to significantly speedup calculations and reduce memory. Numerical experiments using the Monte Carlo approach demonstrate robustness, efficiency, and scalability of the proposed method.Comment: 15 pages, 1 figure, 3 tables, submitted to the proceedings of the 14th Computer Science Symposium in Russia (CSR 2019

    Weakly Supervised Person Re-ID: Differentiable Graphical Learning and A New Benchmark

    Full text link
    Person re-identification (Re-ID) benefits greatly from the accurate annotations of existing datasets (e.g., CUHK03 [1] and Market-1501 [2]), which are quite expensive because each image in these datasets has to be assigned with a proper label. In this work, we ease the annotation of Re-ID by replacing the accurate annotation with inaccurate annotation, i.e., we group the images into bags in terms of time and assign a bag-level label for each bag. This greatly reduces the annotation effort and leads to the creation of a large-scale Re-ID benchmark called SYSU-30kk. The new benchmark contains 30k30k individuals, which is about 2020 times larger than CUHK03 (1.3k1.3k individuals) and Market-1501 (1.5k1.5k individuals), and 3030 times larger than ImageNet (1k1k categories). It sums up to 29,606,918 images. Learning a Re-ID model with bag-level annotation is called the weakly supervised Re-ID problem. To solve this problem, we introduce a differentiable graphical model to capture the dependencies from all images in a bag and generate a reliable pseudo label for each person image. The pseudo label is further used to supervise the learning of the Re-ID model. When compared with the fully supervised Re-ID models, our method achieves state-of-the-art performance on SYSU-30kk and other datasets. The code, dataset, and pretrained model will be available at \url{https://github.com/wanggrun/SYSU-30k}.Comment: Accepted by TNNLS 202

    A New Vision of Collaborative Active Learning

    Full text link
    Active learning (AL) is a learning paradigm where an active learner has to train a model (e.g., a classifier) which is in principal trained in a supervised way, but in AL it has to be done by means of a data set with initially unlabeled samples. To get labels for these samples, the active learner has to ask an oracle (e.g., a human expert) for labels. The goal is to maximize the performance of the model and to minimize the number of queries at the same time. In this article, we first briefly discuss the state of the art and own, preliminary work in the field of AL. Then, we propose the concept of collaborative active learning (CAL). With CAL, we will overcome some of the harsh limitations of current AL. In particular, we envision scenarios where an expert may be wrong for various reasons, there might be several or even many experts with different expertise, the experts may label not only samples but also knowledge at a higher level such as rules, and we consider that the labeling costs depend on many conditions. Moreover, in a CAL process human experts will profit by improving their own knowledge, too.Comment: 16 pages, 6 Figure

    Information Extraction from Scientific Literature for Method Recommendation

    Full text link
    As a research community grows, more and more papers are published each year. As a result there is increasing demand for improved methods for finding relevant papers, automatically understanding the key ideas and recommending potential methods for a target problem. Despite advances in search engines, it is still hard to identify new technologies according to a researcher's need. Due to the large variety of domains and extremely limited annotated resources, there has been relatively little work on leveraging natural language processing in scientific recommendation. In this proposal, we aim at making scientific recommendations by extracting scientific terms from a large collection of scientific papers and organizing the terms into a knowledge graph. In preliminary work, we trained a scientific term extractor using a small amount of annotated data and obtained state-of-the-art performance by leveraging large amount of unannotated papers through applying multiple semi-supervised approaches. We propose to construct a knowledge graph in a way that can make minimal use of hand annotated data, using only the extracted terms, unsupervised relational signals such as co-occurrence, and structural external resources such as Wikipedia. Latent relations between scientific terms can be learned from the graph. Recommendations will be made through graph inference for both observed and unobserved relational pairs.Comment: Thesis Proposal. arXiv admin note: text overlap with arXiv:1708.0607

    Structure Label Prediction Using Similarity-Based Retrieval and Weakly-Supervised Label Mapping

    Full text link
    Recently, there has been significant interest in various supervised machine learning techniques that can help reduce the time and effort consumed by manual interpretation workflows. However, most successful supervised machine learning algorithms require huge amounts of annotated training data. Obtaining these labels for large seismic volumes is a very time-consuming and laborious task. We address this problem by presenting a weakly-supervised approach for predicting the labels of various seismic structures. By having an interpreter select a very small number of exemplar images for every class of subsurface structures, we use a novel similarity-based retrieval technique to extract thousands of images that contain similar subsurface structures from the seismic volume. By assuming that similar images belong to the same class, we obtain thousands of image-level labels for these images; we validate this assumption in our results section. We then introduce a novel weakly-supervised algorithm for mapping these rough image-level labels into more accurate pixel-level labels that localize the different subsurface structures within the image. This approach dramatically simplifies the process of obtaining labeled data for training supervised machine learning algorithms on seismic interpretation tasks. Using our method we generate thousands of automatically-labeled images from the Netherlands Offshore F3 block with reasonably accurate pixel-level labels. We believe this work will allow for more advances in machine learning-enabled seismic interpretation.Comment: Published at SEG Geophysics Journal in Dec 201

    Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus

    Full text link
    Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.Comment: ACL 2018 workshop on Deep Learning Approaches for Low-Resource NL

    Exploring Representativeness and Informativeness for Active Learning

    Full text link
    How can we find a general way to choose the most suitable samples for training a classifier? Even with very limited prior information? Active learning, which can be regarded as an iterative optimization procedure, plays a key role to construct a refined training set to improve the classification performance in a variety of applications, such as text analysis, image recognition, social network modeling, etc. Although combining representativeness and informativeness of samples has been proven promising for active sampling, state-of-the-art methods perform well under certain data structures. Then can we find a way to fuse the two active sampling criteria without any assumption on data? This paper proposes a general active learning framework that effectively fuses the two criteria. Inspired by a two-sample discrepancy problem, triple measures are elaborately designed to guarantee that the query samples not only possess the representativeness of the unlabeled data but also reveal the diversity of the labeled data. Any appropriate similarity measure can be employed to construct the triple measures. Meanwhile, an uncertain measure is leveraged to generate the informativeness criterion, which can be carried out in different ways. Rooted in this framework, a practical active learning algorithm is proposed, which exploits a radial basis function together with the estimated probabilities to construct the triple measures and a modified Best-versus-Second-Best strategy to construct the uncertain measure, respectively. Experimental results on benchmark datasets demonstrate that our algorithm consistently achieves superior performance over the state-of-the-art active learning algorithms

    Learning with Inadequate and Incorrect Supervision

    Full text link
    Practically, we are often in the dilemma that the labeled data at hand are inadequate to train a reliable classifier, and more seriously, some of these labeled data may be mistakenly labeled due to the various human factors. Therefore, this paper proposes a novel semi-supervised learning paradigm that can handle both label insufficiency and label inaccuracy. To address label insufficiency, we use a graph to bridge the data points so that the label information can be propagated from the scarce labeled examples to unlabeled examples along the graph edges. To address label inaccuracy, Graph Trend Filtering (GTF) and Smooth Eigenbase Pursuit (SEP) are adopted to filter out the initial noisy labels. GTF penalizes the l_0 norm of label difference between connected examples in the graph and exhibits better local adaptivity than the traditional l_2 norm-based Laplacian smoother. SEP reconstructs the correct labels by emphasizing the leading eigenvectors of Laplacian matrix associated with small eigenvalues, as these eigenvectors reflect real label smoothness and carry rich class separation cues. We term our algorithm as `Semi-supervised learning under Inadequate and Incorrect Supervision' (SIIS). Thorough experimental results on image classification, text categorization, and speech recognition demonstrate that our SIIS is effective in label error correction, leading to superior performance to the state-of-the-art methods in the presence of label noise and label scarcity

    Weakly Supervised Open-set Domain Adaptation by Dual-domain Collaboration

    Full text link
    In conventional domain adaptation, a critical assumption is that there exists a fully labeled domain (source) that contains the same label space as another unlabeled or scarcely labeled domain (target). However, in the real world, there often exist application scenarios in which both domains are partially labeled and not all classes are shared between these two domains. Thus, it is meaningful to let partially labeled domains learn from each other to classify all the unlabeled samples in each domain under an open-set setting. We consider this problem as weakly supervised open-set domain adaptation. To address this practical setting, we propose the Collaborative Distribution Alignment (CDA) method, which performs knowledge transfer bilaterally and works collaboratively to classify unlabeled data and identify outlier samples. Extensive experiments on the Office benchmark and an application on person reidentification show that our method achieves state-of-the-art performance.Comment: CVPR 201

    Active Learning Methods based on Statistical Leverage Scores

    Full text link
    In many real-world machine learning applications, unlabeled data are abundant whereas class labels are expensive and scarce. An active learner aims to obtain a model of high accuracy with as few labeled instances as possible by effectively selecting useful examples for labeling. We propose a new selection criterion that is based on statistical leverage scores and present two novel active learning methods based on this criterion: ALEVS for querying single example at each iteration and DBALEVS for querying a batch of examples. To assess the representativeness of the examples in the pool, ALEVS and DBALEVS use the statistical leverage scores of the kernel matrices computed on the examples of each class. Additionally, DBALEVS selects a diverse a set of examples that are highly representative but are dissimilar to already labeled examples through maximizing a submodular set function defined with the statistical leverage scores and the kernel matrix computed on the pool of the examples. The submodularity property of the set scoring function let us identify batches with a constant factor approximate to the optimal batch in an efficient manner. Our experiments on diverse datasets show that querying based on leverage scores is a powerful strategy for active learning.Comment: Submitted to Machine Learning Journal, EMLP 2019 journal trac
    • …
    corecore