308 research outputs found

    Domain Transfer Learning for MCI Conversion Prediction

    Get PDF
    Machine learning methods have been increasingly used to predict the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD), by classifying MCI converters (MCI-C) from MCI non-converters (MCI-NC). However, most of existing methods construct classifiers using only data from one particular target domain (e.g., MCI), and ignore data in the other related domains (e.g., AD and normal control (NC)) that could provide valuable information to promote the performance of MCI conversion prediction. To this end, we develop a novel domain transfer learning method for MCI conversion prediction, which can use data from both the target domain (i.e., MCI) and the auxiliary domains (i.e., AD and NC). Specifically, the proposed method consists of three key components: 1) a domain transfer feature selection (DTFS) component that selects the most informative feature-subset from both target domain and auxiliary domains with different imaging modalities, 2) a domain transfer sample selection (DTSS) component that selects the most informative sample-subset from the same target and auxiliary domains with different data modalities, and 3) a domain transfer support vector machine (DTSVM) classification component that fuses the selected features and samples to separate MCI-C and MCI-NC patients. We evaluate our method on 202 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI, FDG-PET and CSF data. The experimental results show that the proposed method can classify MCI-C patients from MCI-NC patients with an accuracy of 79.4%, with the aid of additional domain knowledge learned from AD and NC

    Multimodal manifold-regularized transfer learning for MCI conversion prediction

    Get PDF
    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods

    Machine Learning for Detection of Cognitive Impairment

    Get PDF
    The detection of cognitive problems, especially in the early stages, is critical and the method by which it is diagnosed is manual and depends on one or more specialist doctors, to diagnose it as the cognitive decline escalates into the early stage of dementia, e.g., Alzheimer's disease (AD). The early stages of AD are very similar to Mild Cognitive Impairment (MCI); it is essential to identify the possible factors associated with the disease. This research aims to demonstrate that automated models can differentiate and classify MCI and AD in the early stages. The present research used a combination of Machine Learning (ML) algorithms to identify AD, using gene expressions. The algorithms used for the classification of cognitive problems and healthy people (control) were: Linear Regression, Decision Trees (DT), Naîve Bayes (NB) and Deep Learning (DP). The result of this research shows ML algorithms can identify AD, in early stages, with an 80% accuracy, using a Deep Learning (DL) algorithm.Fil: Diaz, Valeria. Universidad de Palermo. Facultad de Ingeniería; ArgentinaFil: Rodríguez, Guillermo Horacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentin

    Comprehensive Performance Analysis of Neurodegenerative disease Incidence in the Females of 60-96 year Age Group

    Get PDF
    Neurodegenerative diseases such as Alzheimer's disease and dementia are gradually becoming more prevalent chronic diseases, characterized by the decline in cognitive and behavioral symptoms. Machine learning is revolu-tionising almost all domains of our life, including the clinical system. The application of machine learning has the potential to enormously augment the reach of neurodegenerative care thus building it more proficient. Throughout the globe, there is a massive burden of Alzheimer's and demen-tia cases; which denotes an exclusive set of difficulties. This provides us with an exceptional opportunity in terms of the impending convenience of data. Harnessing this data using machine learning tools and techniques, can put scientists and physicians in the lead research position in this area. The ob-jective of this study was to develop an efficient prognostic ML model with high-performance metrics to better identify female candidate subjects at risk of having Alzheimer's disease and dementia. The study was based on two diverse datasets. The results have been discussed employing seven perfor-mance evaluation measures i.e. accuracy, precision, recall, F-measure, Re-ceiver Operating Characteristic (ROC) area, Kappa statistic, and Root Mean Squared Error (RMSE). Also, a comprehensive performance analysis has been carried out later in the study

    Quantifying cognitive and mortality outcomes in older patients following acute illness using epidemiological and machine learning approaches

    Get PDF
    Introduction: Cognitive and functional decompensation during acute illness in older people are poorly understood. It remains unclear how delirium, an acute confusional state reflective of cognitive decompensation, is contextualised by baseline premorbid cognition and relates to long-term adverse outcomes. High-dimensional machine learning offers a novel, feasible and enticing approach for stratifying acute illness in older people, improving treatment consistency while optimising future research design. Methods: Longitudinal associations were analysed from the Delirium and Population Health Informatics Cohort (DELPHIC) study, a prospective cohort ≥70 years resident in Camden, with cognitive and functional ascertainment at baseline and 2-year follow-up, and daily assessments during incident hospitalisation. Second, using routine clinical data from UCLH, I constructed an extreme gradient-boosted trees predicting 600-day mortality for unselected acute admissions of oldest-old patients with mechanistic inferences. Third, hierarchical agglomerative clustering was performed to demonstrate structure within DELPHIC participants, with predictive implications for survival and length of stay. Results: i. Delirium is associated with increased rates of cognitive decline and mortality risk, in a dose-dependent manner, with an interaction between baseline cognition and delirium exposure. Those with highest delirium exposure but also best premorbid cognition have the “most to lose”. ii. High-dimensional multimodal machine learning models can predict mortality in oldest-old populations with 0.874 accuracy. The anterior cingulate and angular gyri, and extracranial soft tissue, are the highest contributory intracranial and extracranial features respectively. iii. Clinically useful acute illness subtypes in older people can be described using longitudinal clinical, functional, and biochemical features. Conclusions: Interactions between baseline cognition and delirium exposure during acute illness in older patients result in divergent long-term adverse outcomes. Supervised machine learning can robustly predict mortality in in oldest-old patients, producing a valuable prognostication tool using routinely collected data, ready for clinical deployment. Preliminary findings suggest possible discernible subtypes within acute illness in older people

    Supervised Sparse Components Analysis with Application to Brain Imaging Data

    Get PDF
    We propose a dimension-reduction method using supervised (multi-block) sparse (principal) component analysis. The method is first implemented through basis expansion of spatial brain images, and the scores are then reduced through regularized matrix decomposition to produce simultaneous data-driven selections of related brain regions, supervised by univariate composite scores representing linear combinations of covariates. Two advantages of the proposed method are that it identifies the associations between brain regions at the voxel level and that supervision is helpful for interpretation. The proposed method was applied to a study on Alzheimer’s disease (AD) that involved using multimodal whole-brain magnetic resonance imaging (MRI) and positron emission tomography (PET). For illustrative purposes, we demonstrate cases of both single- and multimodal brain imaging and longitudinal measurements

    Alzheimer Disease Detection Techniques and Methods: A Review

    Get PDF
    Brain pathological changes linked with Alzheimer's disease (AD) can be measured with Neuroimaging. In the past few years, these measures are rapidly integrated into the signatures of Alzheimer disease (AD) with the help of classification frameworks which are offering tools for diagnosis and prognosis. Here is the review study of Alzheimer's disease based on Neuroimaging and cognitive impairment classification. This work is a systematic review for the published work in the field of AD especially the computer-aided diagnosis. The imaging modalities include 1) Magnetic resonance imaging (MRI) 2) Functional MRI (fMRI) 3) Diffusion tensor imaging 4) Positron emission tomography (PET) and 5) amyloid-PET. The study revealed that the classification criterion based on the features shows promising results to diagnose the disease and helps in clinical progression. The most widely used machine learning classifiers for AD diagnosis include Support Vector Machine, Bayesian Classifiers, Linear Discriminant Analysis, and K-Nearest Neighbor along with Deep learning. The study revealed that the deep learning techniques and support vector machine give higher accuracies in the identification of Alzheimer’s disease. The possible challenges along with future directions are also discussed in the paper
    • …
    corecore