2,560 research outputs found

    Deep Lesion Graphs in the Wild: Relationship Learning and Organization of Significant Radiology Image Findings in a Diverse Large-scale Lesion Database

    Full text link
    Radiologists in their daily work routinely find and annotate significant abnormalities on a large number of radiology images. Such abnormalities, or lesions, have collected over years and stored in hospitals' picture archiving and communication systems. However, they are basically unsorted and lack semantic annotations like type and location. In this paper, we aim to organize and explore them by learning a deep feature representation for each lesion. A large-scale and comprehensive dataset, DeepLesion, is introduced for this task. DeepLesion contains bounding boxes and size measurements of over 32K lesions. To model their similarity relationship, we leverage multiple supervision information including types, self-supervised location coordinates and sizes. They require little manual annotation effort but describe useful attributes of the lesions. Then, a triplet network is utilized to learn lesion embeddings with a sequential sampling strategy to depict their hierarchical similarity structure. Experiments show promising qualitative and quantitative results on lesion retrieval, clustering, and classification. The learned embeddings can be further employed to build a lesion graph for various clinically useful applications. We propose algorithms for intra-patient lesion matching and missing annotation mining. Experimental results validate their effectiveness.Comment: Accepted by CVPR2018. DeepLesion url adde

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie

    Text summarization towards scientific information extraction

    Get PDF
    Despite the exponential growth in scientific textual content, research publications are still the primary means for disseminating vital discoveries to experts within their respective fields. These texts are predominantly written for human consumption resulting in two primary challenges; experts cannot efficiently remain well-informed to leverage the latest discoveries, and applications that rely on valuable insights buried in these texts cannot effectively build upon published results. As a result, scientific progress stalls. Automatic Text Summarization (ATS) and Information Extraction (IE) are two essential fields that address this problem. While the two research topics are often studied independently, this work proposes to look at ATS in the context of IE, specifically in relation to Scientific IE. However, Scientific IE faces several challenges, chiefly, the scarcity of relevant entities and insufficient training data. In this paper, we focus on extractive ATS, which identifies the most valuable sentences from textual content for the purpose of ultimately extracting scientific relations. We account for the associated challenges by means of an ensemble method through the integration of three weakly supervised learning models, one for each entity of the target relation. It is important to note that while the relation is well defined, we do not require previously annotated data for the entities composing the relation. Our central objective is to generate balanced training data, which many advanced natural language processing models require. We apply our idea in the domain of materials science, extracting the polymer-glass transition temperature relation and achieve 94.7% recall (i.e., sentences that contain relations annotated by humans), while reducing the text by 99.3% of the original document

    Data-efficient methods for information extraction

    Get PDF
    Strukturierte Wissensrepräsentationssysteme wie Wissensdatenbanken oder Wissensgraphen bieten Einblicke in Entitäten und Beziehungen zwischen diesen Entitäten in der realen Welt. Solche Wissensrepräsentationssysteme können in verschiedenen Anwendungen der natürlichen Sprachverarbeitung eingesetzt werden, z. B. bei der semantischen Suche, der Beantwortung von Fragen und der Textzusammenfassung. Es ist nicht praktikabel und ineffizient, diese Wissensrepräsentationssysteme manuell zu befüllen. In dieser Arbeit entwickeln wir Methoden, um automatisch benannte Entitäten und Beziehungen zwischen den Entitäten aus Klartext zu extrahieren. Unsere Methoden können daher verwendet werden, um entweder die bestehenden unvollständigen Wissensrepräsentationssysteme zu vervollständigen oder ein neues strukturiertes Wissensrepräsentationssystem von Grund auf zu erstellen. Im Gegensatz zu den gängigen überwachten Methoden zur Informationsextraktion konzentrieren sich unsere Methoden auf das Szenario mit wenigen Daten und erfordern keine große Menge an kommentierten Daten. Im ersten Teil der Arbeit haben wir uns auf das Problem der Erkennung von benannten Entitäten konzentriert. Wir haben an der gemeinsamen Aufgabe von Bacteria Biotope 2019 teilgenommen. Die gemeinsame Aufgabe besteht darin, biomedizinische Entitätserwähnungen zu erkennen und zu normalisieren. Unser linguistically informed Named-Entity-Recognition-System besteht aus einem Deep-Learning-basierten Modell, das sowohl verschachtelte als auch flache Entitäten extrahieren kann; unser Modell verwendet mehrere linguistische Merkmale und zusätzliche Trainingsziele, um effizientes Lernen in datenarmen Szenarien zu ermöglichen. Unser System zur Entitätsnormalisierung verwendet String-Match, Fuzzy-Suche und semantische Suche, um die extrahierten benannten Entitäten mit den biomedizinischen Datenbanken zu verknüpfen. Unser System zur Erkennung von benannten Entitäten und zur Entitätsnormalisierung erreichte die niedrigste Slot-Fehlerrate von 0,715 und belegte den ersten Platz in der gemeinsamen Aufgabe. Wir haben auch an zwei gemeinsamen Aufgaben teilgenommen: Adverse Drug Effect Span Detection (Englisch) und Profession Span Detection (Spanisch); beide Aufgaben sammeln Daten von der Social Media Plattform Twitter. Wir haben ein Named-Entity-Recognition-Modell entwickelt, das die Eingabedarstellung des Modells durch das Stapeln heterogener Einbettungen aus verschiedenen Domänen verbessern kann; unsere empirischen Ergebnisse zeigen komplementäres Lernen aus diesen heterogenen Einbettungen. Unser Beitrag belegte den 3. Platz in den beiden gemeinsamen Aufgaben. Im zweiten Teil der Arbeit untersuchten wir Strategien zur Erweiterung synthetischer Daten, um ressourcenarme Informationsextraktion in spezialisierten Domänen zu ermöglichen. Insbesondere haben wir backtranslation an die Aufgabe der Erkennung von benannten Entitäten auf Token-Ebene und der Extraktion von Beziehungen auf Satzebene angepasst. Wir zeigen, dass die Rückübersetzung sprachlich vielfältige und grammatikalisch kohärente synthetische Sätze erzeugen kann und als wettbewerbsfähige Erweiterungsstrategie für die Aufgaben der Erkennung von benannten Entitäten und der Extraktion von Beziehungen dient. Bei den meisten realen Aufgaben zur Extraktion von Beziehungen stehen keine kommentierten Daten zur Verfügung, jedoch ist häufig ein großer unkommentierter Textkorpus vorhanden. Bootstrapping-Methoden zur Beziehungsextraktion können mit diesem großen Korpus arbeiten, da sie nur eine Handvoll Startinstanzen benötigen. Bootstrapping-Methoden neigen jedoch dazu, im Laufe der Zeit Rauschen zu akkumulieren (bekannt als semantische Drift), und dieses Phänomen hat einen drastischen negativen Einfluss auf die endgültige Genauigkeit der Extraktionen. Wir entwickeln zwei Methoden zur Einschränkung des Bootstrapping-Prozesses, um die semantische Drift bei der Extraktion von Beziehungen zu minimieren. Unsere Methoden nutzen die Graphentheorie und vortrainierte Sprachmodelle, um verrauschte Extraktionsmuster explizit zu identifizieren und zu entfernen. Wir berichten über die experimentellen Ergebnisse auf dem TACRED-Datensatz für vier Relationen. Im letzten Teil der Arbeit demonstrieren wir die Anwendung der Domänenanpassung auf die anspruchsvolle Aufgabe der mehrsprachigen Akronymextraktion. Unsere Experimente zeigen, dass die Domänenanpassung die Akronymextraktion in wissenschaftlichen und juristischen Bereichen in sechs Sprachen verbessern kann, darunter auch Sprachen mit geringen Ressourcen wie Persisch und Vietnamesisch.The structured knowledge representation systems such as knowledge base or knowledge graph can provide insights regarding entities and relationship(s) among these entities in the real-world, such knowledge representation systems can be employed in various natural language processing applications such as semantic search, question answering and text summarization. It is infeasible and inefficient to manually populate these knowledge representation systems. In this work, we develop methods to automatically extract named entities and relationships among the entities from plain text and hence our methods can be used to either complete the existing incomplete knowledge representation systems to create a new structured knowledge representation system from scratch. Unlike mainstream supervised methods for information extraction, our methods focus on the low-data scenario and do not require a large amount of annotated data. In the first part of the thesis, we focused on the problem of named entity recognition. We participated in the shared task of Bacteria Biotope 2019, the shared task consists of recognizing and normalizing the biomedical entity mentions. Our linguistically informed named entity recognition system consists of a deep learning based model which can extract both nested and flat entities; our model employed several linguistic features and auxiliary training objectives to enable efficient learning in data-scarce scenarios. Our entity normalization system employed string match, fuzzy search and semantic search to link the extracted named entities to the biomedical databases. Our named entity recognition and entity normalization system achieved the lowest slot error rate of 0.715 and ranked first in the shared task. We also participated in two shared tasks of Adverse Drug Effect Span detection (English) and Profession Span Detection (Spanish); both of these tasks collect data from the social media platform Twitter. We developed a named entity recognition model which can improve the input representation of the model by stacking heterogeneous embeddings from a diverse domain(s); our empirical results demonstrate complementary learning from these heterogeneous embeddings. Our submission ranked 3rd in both of the shared tasks. In the second part of the thesis, we explored synthetic data augmentation strategies to address low-resource information extraction in specialized domains. Specifically, we adapted backtranslation to the token-level task of named entity recognition and sentence-level task of relation extraction. We demonstrate that backtranslation can generate linguistically diverse and grammatically coherent synthetic sentences and serve as a competitive augmentation strategy for the task of named entity recognition and relation extraction. In most of the real-world relation extraction tasks, the annotated data is not available, however, quite often a large unannotated text corpus is available. Bootstrapping methods for relation extraction can operate on this large corpus as they only require a handful of seed instances. However, bootstrapping methods tend to accumulate noise over time (known as semantic drift) and this phenomenon has a drastic negative impact on the final precision of the extractions. We develop two methods to constrain the bootstrapping process to minimise semantic drift for relation extraction; our methods leverage graph theory and pre-trained language models to explicitly identify and remove noisy extraction patterns. We report the experimental results on the TACRED dataset for four relations. In the last part of the thesis, we demonstrate the application of domain adaptation to the challenging task of multi-lingual acronym extraction. Our experiments demonstrate that domain adaptation can improve acronym extraction within scientific and legal domains in 6 languages including low-resource languages such as Persian and Vietnamese
    corecore