3,113 research outputs found

    PresenceSense: Zero-training Algorithm for Individual Presence Detection based on Power Monitoring

    Full text link
    Non-intrusive presence detection of individuals in commercial buildings is much easier to implement than intrusive methods such as passive infrared, acoustic sensors, and camera. Individual power consumption, while providing useful feedback and motivation for energy saving, can be used as a valuable source for presence detection. We conduct pilot experiments in an office setting to collect individual presence data by ultrasonic sensors, acceleration sensors, and WiFi access points, in addition to the individual power monitoring data. PresenceSense (PS), a semi-supervised learning algorithm based on power measurement that trains itself with only unlabeled data, is proposed, analyzed and evaluated in the study. Without any labeling efforts, which are usually tedious and time consuming, PresenceSense outperforms popular models whose parameters are optimized over a large training set. The results are interpreted and potential applications of PresenceSense on other data sources are discussed. The significance of this study attaches to space security, occupancy behavior modeling, and energy saving of plug loads.Comment: BuildSys 201

    Multi-encoder attention-based architectures for sound recognition with partial visual assistance

    Full text link
    Large-scale sound recognition data sets typically consist of acoustic recordings obtained from multimedia libraries. As a consequence, modalities other than audio can often be exploited to improve the outputs of models designed for associated tasks. Frequently, however, not all contents are available for all samples of such a collection: For example, the original material may have been removed from the source platform at some point, and therefore, non-auditory features can no longer be acquired. We demonstrate that a multi-encoder framework can be employed to deal with this issue by applying this method to attention-based deep learning systems, which are currently part of the state of the art in the domain of sound recognition. More specifically, we show that the proposed model extension can successfully be utilized to incorporate partially available visual information into the operational procedures of such networks, which normally only use auditory features during training and inference. Experimentally, we verify that the considered approach leads to improved predictions in a number of evaluation scenarios pertaining to audio tagging and sound event detection. Additionally, we scrutinize some properties and limitations of the presented technique.Comment: Submitted to EURASIP Journal on Audio, Speech, and Music Processin

    A detection-based pattern recognition framework and its applications

    Get PDF
    The objective of this dissertation is to present a detection-based pattern recognition framework and demonstrate its applications in automatic speech recognition and broadcast news video story segmentation. Inspired by the studies of modern cognitive psychology and real-world pattern recognition systems, a detection-based pattern recognition framework is proposed to provide an alternative solution for some complicated pattern recognition problems. The primitive features are first detected and the task-specific knowledge hierarchy is constructed level by level; then a variety of heterogeneous information sources are combined together and the high-level context is incorporated as additional information at certain stages. A detection-based framework is a â divide-and-conquerâ design paradigm for pattern recognition problems, which will decompose a conceptually difficult problem into many elementary sub-problems that can be handled directly and reliably. Some information fusion strategies will be employed to integrate the evidence from a lower level to form the evidence at a higher level. Such a fusion procedure continues until reaching the top level. Generally, a detection-based framework has many advantages: (1) more flexibility in both detector design and fusion strategies, as these two parts can be optimized separately; (2) parallel and distributed computational components in primitive feature detection. In such a component-based framework, any primitive component can be replaced by a new one while other components remain unchanged; (3) incremental information integration; (4) high level context information as additional information sources, which can be combined with bottom-up processing at any stage. This dissertation presents the basic principles, criteria, and techniques for detector design and hypothesis verification based on the statistical detection and decision theory. In addition, evidence fusion strategies were investigated in this dissertation. Several novel detection algorithms and evidence fusion methods were proposed and their effectiveness was justified in automatic speech recognition and broadcast news video segmentation system. We believe such a detection-based framework can be employed in more applications in the future.Ph.D.Committee Chair: Lee, Chin-Hui; Committee Member: Clements, Mark; Committee Member: Ghovanloo, Maysam; Committee Member: Romberg, Justin; Committee Member: Yuan, Min
    • …
    corecore