789 research outputs found

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    Aika: A Distributed Edge System For Machine Learning Inference. Detecting and defending against abnormal behavior in untrusted edge environments

    Get PDF
    The edge computing paradigm has recently started to gain a lot of momentum. The field of Artificial Intelligence (AI) has also grown in recent years, and there is currently ongoing research that investigates how AI can be applied to numerous of different fields. This includes the edge computing domain. In Norway, there is currently ongoing research being conducted that investigates how the confluence between AI and edge computing can be used to hinder fish crime, by stationing surveillance equipment aboard fishing vessels, and perform all the monitoring directly on the vessel with support of AI. This is challenging for several reasons. First and foremost, the equipment needs to be stationed on the vessel, where actors may impose a threat to it and attempt to damage it, or interfere with the analytical process. The second challenge is to enable multiple machine learning pipelines to be executed effectively on the equipment. This requires a versatile computation model, where data is handled in a privacy preserving manner. This thesis presents Áika, a distributed edge computing system that supports machine learning inference in such untrusted edge environments. Áika is designed as a hierarchical fault tolerant system that supports a directed acyclic graph (DAG) computation model for executing machine inference on the edge, where a monitor residing in a trusted location can ensure that the system is running as expected. The experiment results demonstrate that Áika can tolerate failures while remaining operable with a stable throughput, although this will depend on the specific configuration and what computations that are implemented. The results also demonstrate that Áika can be used for both simple tasks, like counting words in a textual document, and for more complex tasks, like performing feature extraction using pre-trained deep learning models that are distributed across different workers. With Áika, application developers can develop fault tolerant and different distributed DAGs composed of multiple pipelines

    Concept graphs: Applications to biomedical text categorization and concept extraction

    Get PDF
    As science advances, the underlying literature grows rapidly providing valuable knowledge mines for researchers and practitioners. The text content that makes up these knowledge collections is often unstructured and, thus, extracting relevant or novel information could be nontrivial and costly. In addition, human knowledge and expertise are being transformed into structured digital information in the form of vocabulary databases and ontologies. These knowledge bases hold substantial hierarchical and semantic relationships of common domain concepts. Consequently, automating learning tasks could be reinforced with those knowledge bases through constructing human-like representations of knowledge. This allows developing algorithms that simulate the human reasoning tasks of content perception, concept identification, and classification. This study explores the representation of text documents using concept graphs that are constructed with the help of a domain ontology. In particular, the target data sets are collections of biomedical text documents, and the domain ontology is a collection of predefined biomedical concepts and relationships among them. The proposed representation preserves those relationships and allows using the structural features of graphs in text mining and learning algorithms. Those features emphasize the significance of the underlying relationship information that exists in the text content behind the interrelated topics and concepts of a text document. The experiments presented in this study include text categorization and concept extraction applied on biomedical data sets. The experimental results demonstrate how the relationships extracted from text and captured in graph structures can be used to improve the performance of the aforementioned applications. The discussed techniques can be used in creating and maintaining digital libraries through enhancing indexing, retrieval, and management of documents as well as in a broad range of domain-specific applications such as drug discovery, hypothesis generation, and the analysis of molecular structures in chemoinformatics

    Extracting Temporal and Causal Relations between Events

    Full text link
    Structured information resulting from temporal information processing is crucial for a variety of natural language processing tasks, for instance to generate timeline summarization of events from news documents, or to answer temporal/causal-related questions about some events. In this thesis we present a framework for an integrated temporal and causal relation extraction system. We first develop a robust extraction component for each type of relations, i.e. temporal order and causality. We then combine the two extraction components into an integrated relation extraction system, CATENA---CAusal and Temporal relation Extraction from NAtural language texts---, by utilizing the presumption about event precedence in causality, that causing events must happened BEFORE resulting events. Several resources and techniques to improve our relation extraction systems are also discussed, including word embeddings and training data expansion. Finally, we report our adaptation efforts of temporal information processing for languages other than English, namely Italian and Indonesian.Comment: PhD Thesi

    A Revision of Procedural Knowledge in the conML Framework

    Get PDF
    Machine learning methods have been used very successfully for quite some time to recognize patterns, model correlations and generate hypotheses. However, the possibilities for weighing and evaluating the resulting models and hypotheses, and the search for alternatives and contradictions are still predominantly reserved for humans. For this purpose, the novel concept of constructivist machine learning (conML) formalizes limitations of model validity and employs constructivist learning theory to enable doubting of new and existing models with the possibility of integrating, discarding, combining, and abstracting knowledge. The present work identifies issues that impede the systems capability to abstract knowledge from generated models for tasks that lie in the domain of procedural knowledge, and proposes and implements identified solutions. To this end, the conML framework has been reimplemented in the Julia programming language and subsequently been extended. Using a synthetic dataset of impedance spectra of modeled epithelia that has previously been analyzed with an existing implementation of conML, existing and new implementations are tested for consistency and proposed algorithmic changes are evaluated with respect to changes in model generation and abstraction ability when exploring unknown data. Recommendations for specific settings and suggestions for further research are derived from the results. In terms of performance, flexibility and extensibility, the new implementation of conML in Julia provides a good starting point for further research and application of the system.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 135Maschinelle Lernverfahren werden seit geraumer Zeit sehr erfolgreich zum Erkennen von Mustern, Abbilden von Zusammenhängen und Generieren von Hypothesen eingesetzt. Die Möglichkeiten zum Abwägen und Bewerten der entstandenen Modelle und Hypothesen, und die Suche nach Alternativen und Widersprüchen sind jedoch noch überwiegend dem Menschen vorbehalten. Das neuartige Konzept des konstruktivistischen maschinellen Lernens (conML) formalisiert dazu die Grenzen der Gültigkeit von Modellen und ermöglicht mittels konstruktivistischer Lerntheorie ein Zweifeln über neue und bestehende Modelle mit der Möglichkeit zum Integrieren, Verwerfen, Kombinieren und Abstrahieren von Wissen. Die vorliegende Arbeit identifiziert Probleme, die die Abstraktionsfähigkeit des Systems bei Aufgabenstellungen in der Prozeduralen Wissensdomäne einschränken, bietet Lösungsvorschläge und beschreibt deren Umsetzung. Das algorithmische Framework conML ist dazu in der Programmiersprache Julia reimplementiert und anschließend erweitert worden. Anhand eines synthetischen Datensatzes von Impedanzspektren modellierter Epithelien, der bereits mit einem Prototypen des conML Systems analysiert worden ist, werden bestehende und neue Implementierung auf Konsistenz geprüft und die vorgeschlagenen algorithmischen Änderungen im Hinblick auf Veränderungen beim Erzeugen von Modellen und der Abstraktionsfähigkeit bei der Exploration unbekannter Daten untersucht. Aus den Ergebnissen werden Empfehlungen zu konkreten Einstellungen sowie Vorschläge für weitere Untersuchungen abgeleitet. Die neue Implementierung von conML in Julia bietet im Hinblick auf Performanz, Flexibilität und Erweiterbarkeit einen guten Ausgangspunkt für weitere Forschung und Anwendung des Systems.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 13
    corecore