8 research outputs found

    On semi-planar Steiner quasigroups

    Get PDF
    AbstractA Steiner triple system (briefly ST) is in 1–1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3–24; C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147–181]. It is well known that for each n≡1 or 3 (mod 6) there is a planar squag of cardinality n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289–300]. Quackenbush expected that there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187–1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag. The first author has constructed a semi-planar squag of cardinality 3n for all n>3 and n≡1 or 3 (mod 6) [M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13–27]. In fact, this construction supplies us with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction as n→3n for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. Consequently, we may say that there are semi-planar SQ(3mn)s (or semi-planar ST(3mn)s) for each positive integer m and each n≡1 or 3 (mod 6) with n>3 having only medial subsquags at most of cardinality 3ν (sub-ST(3)ν) for each ν∈{1,2,…,m+1}

    Subject Index Volumes 1–200

    Get PDF

    Acta Scientiarum Mathematicarum : Tomus 50. Fasc. 1-2.

    Get PDF

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Acta Scientiarum Mathematicarum : Tomus 50. Fasc. 3-4.

    Get PDF
    corecore