45,481 research outputs found

    Machine Learning on Graphs: A Model and Comprehensive Taxonomy

    Full text link
    There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning methods have generally fallen into three main categories, based on the availability of labeled data. The first, network embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk, node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the intuition behind these methods, and enables future research in the area

    Machine Learning for Survival Analysis: A Survey

    Full text link
    Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. Such a phenomenon is called censoring which can be effectively handled using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome this censoring issue. In addition, many machine learning algorithms are adapted to effectively handle survival data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the representative statistical methods along with the machine learning techniques used in survival analysis and provide a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in survival analysis and offer some guidelines on applying these approaches to solve new problems that arise in applications with censored data

    Discovering time-varying aeroelastic models of a long-span suspension bridge from field measurements by sparse identification of nonlinear dynamical systems

    Full text link
    We develop data-driven dynamical models of the nonlinear aeroelastic effects on a long-span suspension bridge from sparse, noisy sensor measurements which monitor the bridge. Using the {\em sparse identification of nonlinear dynamics} (SINDy) algorithm, we are able to identify parsimonious, time-varying dynamical systems that capture vortex-induced vibration (VIV) events in the bridge. Thus we are able to posit new, data-driven models highlighting the aeroelastic interaction of the bridge structure with VIV events. The bridge dynamics are shown to have distinct, time-dependent modes of behavior, thus requiring parametric models to account for the diversity of dynamics. Our method generates hitherto unknown bridge-wind interaction models that go beyond current theoretical and computational descriptions. Our proposed method for real-time monitoring and model discovery allow us to move our model predictions beyond lab theory to practical engineering design, which has the potential to assess bad engineering configurations that are susceptible to deleterious bridge-wind interactions. With the rise of real-time sensor networks on major bridges, our model discovery methods can enhance an engineers ability to assess the nonlinear aeroelastic interactions of the bridge with its wind environment.Comment: 14 pages, 12 figure

    Using Embeddings to Correct for Unobserved Confounding in Networks

    Full text link
    We consider causal inference in the presence of unobserved confounding. We study the case where a proxy is available for the unobserved confounding in the form of a network connecting the units. For example, the link structure of a social network carries information about its members. We show how to effectively use the proxy to do causal inference. The main idea is to reduce the causal estimation problem to a semi-supervised prediction of both the treatments and outcomes. Networks admit high-quality embedding models that can be used for this semi-supervised prediction. We show that the method yields valid inferences under suitable (weak) conditions on the quality of the predictive model. We validate the method with experiments on a semi-synthetic social network dataset. Code is available at github.com/vveitch/causal-network-embeddings.Comment: An earlier version also addressed the use of text embeddings. That material has been expanded and moved to arxiv:1905.12741, "Using Text Embeddings for Causal Inference

    Joint Modeling of Event Sequence and Time Series with Attentional Twin Recurrent Neural Networks

    Full text link
    A variety of real-world processes (over networks) produce sequences of data whose complex temporal dynamics need to be studied. More especially, the event timestamps can carry important information about the underlying network dynamics, which otherwise are not available from the time-series evenly sampled from continuous signals. Moreover, in most complex processes, event sequences and evenly-sampled times series data can interact with each other, which renders joint modeling of those two sources of data necessary. To tackle the above problems, in this paper, we utilize the rich framework of (temporal) point processes to model event data and timely update its intensity function by the synergic twin Recurrent Neural Networks (RNNs). In the proposed architecture, the intensity function is synergistically modulated by one RNN with asynchronous events as input and another RNN with time series as input. Furthermore, to enhance the interpretability of the model, the attention mechanism for the neural point process is introduced. The whole model with event type and timestamp prediction output layers can be trained end-to-end and allows a black-box treatment for modeling the intensity. We substantiate the superiority of our model in synthetic data and three real-world benchmark datasets.Comment: 14 page

    Topological based classification of paper domains using graph convolutional networks

    Full text link
    The main approaches for node classification in graphs are information propagation and the association of the class of the node with external information. State of the art methods merge these approaches through Graph Convolutional Networks. We here use the association of topological features of the nodes with their class to predict this class. Moreover, combining topological information with information propagation improves classification accuracy on the standard CiteSeer and Cora paper classification task. Topological features and information propagation produce results almost as good as text-based classification, without no textual or content information. We propose to represent the topology and information propagation through a GCN with the neighboring training node classification as an input and the current node classification as output. Such a formalism outperforms state of the art methods

    Continuous-Time Relationship Prediction in Dynamic Heterogeneous Information Networks

    Full text link
    Online social networks, World Wide Web, media and technological networks, and other types of so-called information networks are ubiquitous nowadays. These information networks are inherently heterogeneous and dynamic. They are heterogeneous as they consist of multi-typed objects and relations, and they are dynamic as they are constantly evolving over time. One of the challenging issues in such heterogeneous and dynamic environments is to forecast those relationships in the network that will appear in the future. In this paper, we try to solve the problem of continuous-time relationship prediction in dynamic and heterogeneous information networks. This implies predicting the time it takes for a relationship to appear in the future, given its features that have been extracted by considering both heterogeneity and temporal dynamics of the underlying network. To this end, we first introduce a feature extraction framework that combines the power of meta-path-based modeling and recurrent neural networks to effectively extract features suitable for relationship prediction regarding heterogeneity and dynamicity of the networks. Next, we propose a supervised non-parametric approach, called Non-Parametric Generalized Linear Model (NP-GLM), which infers the hidden underlying probability distribution of the relationship building time given its features. We then present a learning algorithm to train NP-GLM and an inference method to answer time-related queries. Extensive experiments conducted on synthetic data and three real-world datasets, namely Delicious, MovieLens, and DBLP, demonstrate the effectiveness of NP-GLM in solving continuous-time relationship prediction problem vis-a-vis competitive baselinesComment: To appear in ACM Transactions on Knowledge Discovery from Dat

    An Experimental Comparison of Hybrid Algorithms for Bayesian Network Structure Learning

    Full text link
    We present a novel hybrid algorithm for Bayesian network structure learning, called Hybrid HPC (H2PC). It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. It is based on a subroutine called HPC, that combines ideas from incremental and divide-and-conquer constraint-based methods to learn the parents and children of a target variable. We conduct an experimental comparison of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning, on several benchmarks with various data sizes. Our extensive experiments show that H2PC outperforms MMHC both in terms of goodness of fit to new data and in terms of the quality of the network structure itself, which is closer to the true dependence structure of the data. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other authors. Lecture notes in computer science, springer, 2012, Machine Learning and Knowledge Discovery in Databases, 7523, pp.58-7

    Machine Learning for the Geosciences: Challenges and Opportunities

    Full text link
    Geosciences is a field of great societal relevance that requires solutions to several urgent problems facing our humanity and the planet. As geosciences enters the era of big data, machine learning (ML) -- that has been widely successful in commercial domains -- offers immense potential to contribute to problems in geosciences. However, problems in geosciences have several unique challenges that are seldom found in traditional applications, requiring novel problem formulations and methodologies in machine learning. This article introduces researchers in the machine learning (ML) community to these challenges offered by geoscience problems and the opportunities that exist for advancing both machine learning and geosciences. We first highlight typical sources of geoscience data and describe their properties that make it challenging to use traditional machine learning techniques. We then describe some of the common categories of geoscience problems where machine learning can play a role, and discuss some of the existing efforts and promising directions for methodological development in machine learning. We conclude by discussing some of the emerging research themes in machine learning that are applicable across all problems in the geosciences, and the importance of a deep collaboration between machine learning and geosciences for synergistic advancements in both disciplines.Comment: Under review at IEEE Transactions on Knowledge and Data Engineerin

    Modeling Event Propagation via Graph Biased Temporal Point Process

    Full text link
    Temporal point process is widely used for sequential data modeling. In this paper, we focus on the problem of modeling sequential event propagation in graph, such as retweeting by social network users, news transmitting between websites, etc. Given a collection of event propagation sequences, conventional point process model consider only the event history, i.e. embed event history into a vector, not the latent graph structure. We propose a Graph Biased Temporal Point Process (GBTPP) leveraging the structural information from graph representation learning, where the direct influence between nodes and indirect influence from event history is modeled respectively. Moreover, the learned node embedding vector is also integrated into the embedded event history as side information. Experiments on a synthetic dataset and two real-world datasets show the efficacy of our model compared to conventional methods and state-of-the-art.Comment: 9 pages, 6 figures, 2 table
    • …
    corecore