660 research outputs found

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Mathematical Modelling and Methods for Load Balancing and Coordination of Multi-Robot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, individualizing parts aims to improve product quality and to reduce costs and material waste. This thesis concerns aspects of load balancing and coordination of multi-robot stations in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are suggested along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are fourfold. First, to circumvent robot coordination we construct disjoint robot programs, which require no coordination schemes, are flexible, admit competitive cycle times for several industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we model it as a generalized unrelated parallel machine problem with set packing constraints and suggest a tailored Lagrangian-based branch-and-bound algorithm. Third, a continuous collision detection method needs to determine whether the sweeps of multiple moving robots are disjoint. We suggest using the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods. Fourth, to allow for load balancing of complex multi-robot stations we generalize the disjoint robot programs into sequences of such; for some instances this procedure provides a significant equipment utilization improvement in comparison with previous automated methods

    Mathematical Modelling for Load Balancing and Minimization of Coordination Losses in Multirobot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, in order to improve product quality and reduce costs and material waste. This thesis concerns aspects of load balancing of industrial robots in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are presented along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are manifold. First, to circumvent robot coordination we have constructed disjoint robot programs, which require no coordination schemes, are more flexible, admit competitive cycle times for some industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we modelled it as a generalized unrelated parallel machine problem with set packing constraints and suggested a tighter model formulation, which was proven to be much more tractable for a branch--and--cut solver. Third, within continuous collision detection it needs to be determined whether the sweeps of multiple moving robots are disjoint. Our solution uses the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods
    • …
    corecore