166 research outputs found

    Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies

    Get PDF
    This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent is estimated by merging unknown input observer in the decentralized fault estimation hierarchy. Then, two kinds of distributed fault-tolerant consensus tracking control schemes with average dwelling time technique are developed to guarantee the mean-square exponential consensus convergence of multi-agent systems, respectively, on the basis of the relative neighboring output information as well as the estimated information in fault estimation. Simulation results demonstrate the effectiveness of the proposed fault-tolerant consensus tracking control algorithm

    Distributed Cooperative Control of Multi-Agent Systems Under Detectability and Communication Constraints

    Get PDF
    Cooperative control of multi-agent systems has recently gained widespread attention from the scientific communities due to numerous applications in areas such as the formation control in unmanned vehicles, cooperative attitude control of spacecrafts, clustering of micro-satellites, environmental monitoring and exploration by mobile sensor networks, etc. The primary goal of a cooperative control problem for multi-agent systems is to design a decentralized control algorithm for each agent, relying on the local coordination of their actions to exhibit a collective behavior. Common challenges encountered in the study of cooperative control problems are unavailable group-level information, and limited bandwidth of the shared communication. In this dissertation, we investigate one of such cooperative control problems, namely cooperative output regulation, under various local and global level constraints coming from physical and communication limitations. The objective of the cooperative output regulation problem (CORP) for multi-agent systems is to design a distributed control strategy for the agents to synchronize their state with an external system, called the leader, in the presence of disturbance inputs. For the problem at hand, we additionally consider the scenario in which none of the agents can independently access the synchronization signal from their view of the leader, and therefore it is not possible for the agents to achieve the group objective by themselves unless they cooperate among members. To this end, we devise a novel distributed estimation algorithm to collectively gather the leader states under the discussed detectability constraint, and then use this estimation to synthesize a distributed control solution to the problem. Next, we extend our results in CORP to the case with uncertain agent dynamics arising from modeling errors. In addition to the detectability constraint, we also assumed that the local regulated error signals are not available to the agents for feedback, and thus none of the agents have all the required measurements to independently synthesize a control solution. By combining the distributed observer and a control law based on the internal model principle for the agents, we offer a solution to the robust CORP under these added constraints. In practical applications of multi-agent systems, it is difficult to consistently maintain a reliable communication between the agents. By considering such challenge in the communication, we study the CORP for the case when agents are connected through a time-varying communication topology. Due to the presence of the detectability constraint that none of the agents can independently access all the leader states at any switching instant, we devise a distributed estimation algorithm for the agents to collectively reconstruct the leader states. Then by using this estimation, a distributed dynamic control solution is offered to solve the CORP under the added communication constraint. Since the fixed communication network is a special case of this time-varying counterpart, the offered control solution can be viewed as a generalization of the former results. For effective validation of previous theoretical results, we apply the control algorithms to a practical case study problem on synchronizing the position of networked motors under time-varying communication. Based on our experimental results, we also demonstrate the uniqueness of derived control solutions. Another communication constraint affecting the cooperative control performance is the presence of network delays. To this regard, first we study the distributed state estimation problem of an autonomous plant by a network of observers under heterogeneous time-invariant delays and then extend to the time-varying counterpart. With the use of a low gain based estimation technique, we derive a sufficient stability condition in terms of the upper bound of the low gain parameter or the time delay to guarantee the convergence of estimation errors. Additionally, when the plant measurements are subject to bounded disturbances, we find that that the local estimation errors also remain bounded. Lastly, by using this estimation, we present a distributed control solution for a leader-follower synchronization problem of a multi-agent system. Next, we present another case study concerning a synchronization control problem of a group of distributed generators in an islanded microgrid under unknown time-varying latency. Similar to the case of delayed communication in aforementioned works, we offer a low gain based distributed control protocol to synchronize the terminal voltage and inverter operating frequency

    Coordination of multi-agent systems: stability via nonlinear Perron-Frobenius theory and consensus for desynchronization and dynamic estimation.

    Get PDF
    This thesis addresses a variety of problems that arise in the study of complex networks composed by multiple interacting agents, usually called multi-agent systems (MASs). Each agent is modeled as a dynamical system whose dynamics is fully described by a state-space representation. In the first part the focus is on the application to MASs of recent results that deal with the extensions of Perron-Frobenius theory to nonlinear maps. In the shift from the linear to the nonlinear framework, Perron-Frobenius theory considers maps being order-preserving instead of matrices being nonnegative. The main contribution is threefold. First of all, a convergence analysis of the iterative behavior of two novel classes of order-preserving nonlinear maps is carried out, thus establishing sufficient conditions which guarantee convergence toward a fixed point of the map: nonnegative row-stochastic matrices turns out to be a special case. Secondly, these results are applied to MASs, both in discrete and continuous-time: local properties of the agents' dynamics have been identified so that the global interconnected system falls into one of the above mentioned classes, thus guaranteeing its global stability. Lastly, a sufficient condition on the connectivity of the communication network is provided to restrict the set of equilibrium points of the system to the consensus points, thus ensuring the agents to achieve consensus. These results do not rely on standard tools (e.g., Lyapunov theory) and thus they constitute a novel approach to the analysis and control of multi-agent dynamical systems. In the second part the focus is on the design of dynamic estimation algorithms in large networks which enable to solve specific problems. The first problem consists in breaking synchronization in networks of diffusively coupled harmonic oscillators. The design of a local state feedback that achieves desynchronization in connected networks with arbitrary undirected interactions is provided. The proposed control law is obtained via a novel protocol for the distributed estimation of the Fiedler vector of the Laplacian matrix. The second problem consists in the estimation of the number of active agents in networks wherein agents are allowed to join or leave. The adopted strategy consists in the distributed and dynamic estimation of the maximum among numbers locally generated by the active agents and the subsequent inference of the number of the agents that took part in the experiment. Two protocols are proposed and characterized to solve the consensus problem on the time-varying max value. The third problem consists in the average state estimation of a large network of agents where only a few agents' states are accessible to a centralized observer. The proposed strategy projects the dynamics of the original system into a lower dimensional state space, which is useful when dealing with large-scale systems. Necessary and sufficient conditions for the existence of a linear and a sliding mode observers are derived, along with a characterization of their design and convergence properties

    Consensus Algorithms for Estimation and Discrete Averaging in Networked Control Systems

    Get PDF
    In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the �first part, several solutions to the consensus problem based on gossip under different sets of assumptions are proposed. In the fi�rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of different size. In the second case, under the same discretization assumptions of the �rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Autonomous Navigation of Quadrotor Swarms

    Get PDF
    RÉSUMÉ La mise sur le marché de composants toujours plus performants et compétitifs en termes de coût, ainsi que le développement rapide des technologies de commande et de navigation en robotique, nous ont amenés à envisager le contrôle d’un large essaim de quadrirotors. Di-verses solutions impliquant des drones existent déjà pour différentes applications: inventaire forestier, gestion du littoral, suivi du trafic, etc. Parmi celles-ci, la recherche et le sauvetage en situation d’urgence représentent à nos yeux la possibilité la plus intéressante et constitue, de fait, la première motivation de notre travail. Par conséquent, une large revue de littérature sur la question est fournie. Ce travail se concentre sur le contrôle de l’essaim lui-même, et non sur l’application finale. Tout d’abord, un modèle mathématique de la dynamique du quadrirotor est présenté et plusieurs lois de commande numérique sont synthétisées. Ces dernières implémentent les modes de fonctionnement nécessaires aux algorithmes de navigation, à savoir : commande en vitesse, commande en position et commande en suivi. Ensuite, deux solutions originales et complémentaires de contrôle d’essaim sont proposées. D’une part, un algorithme d’essaimage pour la navigation extérieure est développé. Contrairement à la plupart des travaux trouvés dans la littérature, la solution proposée ici gère non seulement le maintien, mais aussi l’initialisation de la formation. Plus spécifiquement, un modèle de formation hexagonale est introduit. Ensuite, les places en formation sont attribuées de façon optimale à l’aide de l’algorithme hongrois. Enfin, les agents se déplacent jusqu’à la place qui leur est assignée tout en évitant les autres agents avec un algorithme de navigation inspiré du Artificial Potential Field. De plus, cette solution tient compte de contraintes de conception réalistes et a été intégrée avec succès dans un logiciel embarqué de quadrotor déjà existant et opérationnel. Les résultats de simulations Software-In-The-Loop sont fournis. D’autre part, une solution d’essaimage pour la navigation intérieure est étudiée. L’algorithme proposé implémente un certain nombre de comportements individuels simples, de sorte qu’un grand essaim peut suivre un meneur dans des environnements encombrés en se fiant uniquement aux informations locales. Des simulations préliminaires sont effectuées et les résultats montrent qu’il serait possible de faire fonctionner, conformément au besoin étudié, un essaim de cent quadrirotors avec l’algorithme proposé. En particulier, l’essaim est capable de suivre le meneur, de maintenir la connectivité, d’éviter les collisions entre agents, d’éviter les obstacles et même de se faufiler dans des espaces étroits.----------ABSTRACT The ever-growing hardware capabilities and the rapid development of robotic control and navigation technologies have led us to consider the control of an entire swarm of quadrotors. Drone-based solutions have been developed for different applications: forest inventory, coastal management, traÿc monitoring, etc... Among these, the Search And Rescue application represents for us a very promising field of application and constitutes the first motivation of our work. As a result, a wide literature review on the matter is provided. Nevertheless, this work focuses on the swarm control itself, and not on the end user application. First, a mathematical model of the quadrotor dynamics is presented and several digital control laws are designed. The latter provide operating modes useful for the navigation algorithms, namely: velocity control, position control and tracking control. Then, two original and complimentary swarming solutions are proposed. On the one hand, a swarming algorithm for outdoor navigation is developed. Unlike most of the works reviewed in the literature, our solution handles not only the maintenance but also the initialization of the formation. More specifically, an hexagonal formation pattern is intro-duced. Then, positions are optimally assigned using the Hungarian algorithm. Finally, the agents move to their assigned position while avoiding collisions with the other fleet members thanks to a navigation algorithm inspired from Artificial Potential Field. In addition, this solution accounts for realistic design constraints and was successfully integrated into already existing quadrotor onboard software. Software-In-The-Loop simulation results are provided. On the other hand, a swarming solution for indoor navigation is investigated. The proposed algorithm enforces a certain set of expected individual simple behaviors such that a large swarm can follow a leader through cluttered environments relying only on local information. Preliminary simulations are run and the results show that it is possible to operate a swarm of a hundred quadrotors with the proposed algorithm. In particular, the swarm is able to follow the leader, maintain connectivity, avoid collisions with the other agents, avoid obstacles, and even squeeze to pass through narrow spaces

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Activity Report 2022

    Get PDF
    • …
    corecore