611 research outputs found

    Information completeness in Nelson algebras of rough sets induced by quasiorders

    Full text link
    In this paper, we give an algebraic completeness theorem for constructive logic with strong negation in terms of finite rough set-based Nelson algebras determined by quasiorders. We show how for a quasiorder RR, its rough set-based Nelson algebra can be obtained by applying the well-known construction by Sendlewski. We prove that if the set of all RR-closed elements, which may be viewed as the set of completely defined objects, is cofinal, then the rough set-based Nelson algebra determined by a quasiorder forms an effective lattice, that is, an algebraic model of the logic E0E_0, which is characterised by a modal operator grasping the notion of "to be classically valid". We present a necessary and sufficient condition under which a Nelson algebra is isomorphic to a rough set-based effective lattice determined by a quasiorder.Comment: 15 page

    Web spaces and worldwide web spaces: Topological aspects of domain theory

    Get PDF
    Web spaces, wide web spaces and worldwide web spaces (alias C-spaces) provide useful generalizations of continuous domains. We present new characterizations of such spaces and their patch spaces, obtained by joining the original topology with a second topology having the dual specialization order; these patch spaces possess good convexity and separation properties and determine the original web spaces. The category of C-spaces is concretely isomorphic to the category of fan spaces; these are certain quasi-ordered spaces having neighborhood bases of fans, where a fan is obtained by deleting a finite number of principal dual ideals from a principal dual ideal. Our approach has useful consequences for domain theory, because the T0 web spaces are exactly the generalized Scott spaces associated with locally approximating ideal extensions, and the T0 C-spaces are exactly the generalized Scott spaces associated with globally approximating and interpolating ideal extensions. The characterization of continuous lattices as meet-continuous lattices with T2 Lawson topology and the Fundamental Theorem of Compact Semilattices are extended to non-complete posets. Finally, cardinal invariants like density and weight of the involved objects are investigated. © 2019 Marcel Erné. All rights reserved

    Variable sets over an algebra of lifetimes: a contribution of lattice theory to the study of computational topology

    Full text link
    A topos theoretic generalisation of the category of sets allows for modelling spaces which vary according to time intervals. Persistent homology, or more generally, persistence is a central tool in topological data analysis, which examines the structure of data through topology. The basic techniques have been extended in several different directions, permuting the encoding of topological features by so called barcodes or equivalently persistence diagrams. The set of points of all such diagrams determines a complete Heyting algebra that can explain aspects of the relations between persistent bars through the algebraic properties of its underlying lattice structure. In this paper, we investigate the topos of sheaves over such algebra, as well as discuss its construction and potential for a generalised simplicial homology over it. In particular we are interested in establishing a topos theoretic unifying theory for the various flavours of persistent homology that have emerged so far, providing a global perspective over the algebraic foundations of applied and computational topology.Comment: 20 pages, 12 figures, AAA88 Conference proceedings at Demonstratio Mathematica. The new version has restructured arguments, clearer intuition is provided, and several typos correcte

    Tensor products of subspace lattices and rank one density

    Full text link
    We show that, if MM is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, LL is a commutative subspace lattice and PP is the lattice of all projections on a separable infinite dimensional Hilbert space, then the lattice L⊗M⊗PL\otimes M\otimes P is reflexive. If MM is moreover an atomic Boolean subspace lattice while LL is any subspace lattice, we provide a concrete lattice theoretic description of L⊗ML\otimes M in terms of projection valued functions defined on the set of atoms of MM. As a consequence, we show that the Lattice Tensor Product Formula holds for \Alg M and any other reflexive operator algebra and give several further corollaries of these results.Comment: 15 page

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    A theory of quantale-enriched dcpos and their topologization

    Get PDF
    There have been developed several approaches to a quantale-valued quantitative domain theory. If the quantale Q is integral and commutative, then Q-valued domains are Q-enriched, and every Q-enriched domain is sober in its Scott Q-valued topology, where the topological «intersection axiom» is expressed in terms of the binary meet of Q (cf. D. Zhang, G. Zhang, Fuzzy Sets and Systems (2022)). In this paper, we provide a framework for the development of Q-enriched dcpos and Q-enriched domains in the general setting of unital quantales (not necessarily commutative or integral). This is achieved by introducing and applying right subdistributive quasi-magmas on Q in the sense of the category Cat(Q). It is important to point out that our quasi-magmas on Q are in tune with the «intersection axiom» of Q-enriched topologies. When Q is involutive, each Q-enriched domain becomes sober in its Q-enriched Scott topology. This paper also offers a perspective to apply Q-enriched dcpos to quantale computatio
    • …
    corecore