9,663 research outputs found

    Adaptive Image Restoration: Perception Based Neural Nework Models and Algorithms.

    Get PDF
    Abstract This thesis describes research into the field of image restoration. Restoration is a process by which an image suffering some form of distortion or degradation can be recovered to its original form. Two primary concepts within this field have been investigated. The first concept is the use of a Hopfield neural network to implement the constrained least square error method of image restoration. In this thesis, the author reviews previous neural network restoration algorithms in the literature and builds on these algorithms to develop a new faster version of the Hopfield neural network algorithm for image restoration. The versatility of the neural network approach is then extended by the author to deal with the cases of spatially variant distortion and adaptive regularisation. It is found that using the Hopfield-based neural network approach, an image suffering spatially variant degradation can be accurately restored without a substantial penalty in restoration time. In addition, the adaptive regularisation restoration technique presented in this thesis is shown to produce superior results when compared to non-adaptive techniques and is particularly effective when applied to the difficult, yet important, problem of semi-blind deconvolution. The second concept investigated in this thesis, is the difficult problem of incorporating concepts involved in human visual perception into image restoration techniques. In this thesis, the author develops a novel image error measure which compares two images based on the differences between local regional statistics rather than pixel level differences. This measure more closely corresponds to the way humans perceive the differences between two images. Two restoration algorithms are developed by the author based on versions of the novel image error measure. It is shown that the algorithms which utilise this error measure have improved performance and produce visually more pleasing images in the cases of colour and grayscale images under high noise conditions. Most importantly, the perception based algorithms are shown to be extremely tolerant of faults in the restoration algorithm and hence are very robust. A number of experiments have been performed to demonstrate the performance of the various algorithms presented

    Semi-Blind Spatially-Variant Deconvolution in Optical Microscopy with Local Point Spread Function Estimation By Use Of Convolutional Neural Networks

    Full text link
    We present a semi-blind, spatially-variant deconvolution technique aimed at optical microscopy that combines a local estimation step of the point spread function (PSF) and deconvolution using a spatially variant, regularized Richardson-Lucy algorithm. To find the local PSF map in a computationally tractable way, we train a convolutional neural network to perform regression of an optical parametric model on synthetically blurred image patches. We deconvolved both synthetic and experimentally-acquired data, and achieved an improvement of image SNR of 1.00 dB on average, compared to other deconvolution algorithms.Comment: 2018/02/11: submitted to IEEE ICIP 2018 - 2018/05/04: accepted to IEEE ICIP 201

    Deep Graph Laplacian Regularization for Robust Denoising of Real Images

    Full text link
    Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin
    • …
    corecore