3,027 research outputs found

    Cycle-Consistent Adversarial GAN: the integration of adversarial attack and defense

    Full text link
    In image classification of deep learning, adversarial examples where inputs intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those research in these networks are only for one aspect, either an attack or a defense, not considering that attacks and defenses should be interdependent and mutually reinforcing, just like the relationship between spears and shields. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of original instances and adversarial examples. For CycleAdvGAN, once the Generator and are trained, can generate adversarial perturbations efficiently for any instance, so as to make DNNs predict wrong, and recovery adversarial examples to clean instances, so as to make DNNs predict correct. We apply CycleAdvGAN under semi-white box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also efficiently improve the defense ability, which make the integration of adversarial attack and defense come true. In additional, it has improved attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.Comment: 13 pages,7 tables, 1 figur

    A Survey on Resilient Machine Learning

    Full text link
    Machine learning based system are increasingly being used for sensitive tasks such as security surveillance, guiding autonomous vehicle, taking investment decisions, detecting and blocking network intrusion and malware etc. However, recent research has shown that machine learning models are venerable to attacks by adversaries at all phases of machine learning (eg, training data collection, training, operation). All model classes of machine learning systems can be misled by providing carefully crafted inputs making them wrongly classify inputs. Maliciously created input samples can affect the learning process of a ML system by either slowing down the learning process, or affecting the performance of the learned mode, or causing the system make error(s) only in attacker's planned scenario. Because of these developments, understanding security of machine learning algorithms and systems is emerging as an important research area among computer security and machine learning researchers and practitioners. We present a survey of this emerging area in machine learning

    Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples

    Full text link
    A large body of recent work has investigated the phenomenon of evasion attacks using adversarial examples for deep learning systems, where the addition of norm-bounded perturbations to the test inputs leads to incorrect output classification. Previous work has investigated this phenomenon in closed-world systems where training and test inputs follow a pre-specified distribution. However, real-world implementations of deep learning applications, such as autonomous driving and content classification are likely to operate in the open-world environment. In this paper, we demonstrate the success of open-world evasion attacks, where adversarial examples are generated from out-of-distribution inputs (OOD adversarial examples). In our study, we use 11 state-of-the-art neural network models trained on 3 image datasets of varying complexity. We first demonstrate that state-of-the-art detectors for out-of-distribution data are not robust against OOD adversarial examples. We then consider 5 known defenses for adversarial examples, including state-of-the-art robust training methods, and show that against these defenses, OOD adversarial examples can achieve up to 4×\times higher target success rates compared to adversarial examples generated from in-distribution data. We also take a quantitative look at how open-world evasion attacks may affect real-world systems. Finally, we present the first steps towards a robust open-world machine learning system.Comment: 18 pages, 5 figures, 9 table

    Security and Privacy Issues in Deep Learning

    Full text link
    With the development of machine learning (ML), expectations for artificial intelligence (AI) technology have been increasing daily. In particular, deep neural networks have shown outstanding performance results in many fields. Many applications are deeply involved in our daily life, such as making significant decisions in application areas based on predictions or classifications, in which a DL model could be relevant. Hence, if a DL model causes mispredictions or misclassifications due to malicious external influences, then it can cause very large difficulties in real life. Moreover, training DL models involve an enormous amount of data and the training data often include sensitive information. Therefore, DL models should not expose the privacy of such data. In this paper, we review the vulnerabilities and the developed defense methods on the security of the models and data privacy under the notion of secure and private AI (SPAI). We also discuss current challenges and open issues

    Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward

    Full text link
    Connected and autonomous vehicles (CAVs) will form the backbone of future next-generation intelligent transportation systems (ITS) providing travel comfort, road safety, along with a number of value-added services. Such a transformation---which will be fuelled by concomitant advances in technologies for machine learning (ML) and wireless communications---will enable a future vehicular ecosystem that is better featured and more efficient. However, there are lurking security problems related to the use of ML in such a critical setting where an incorrect ML decision may not only be a nuisance but can lead to loss of precious lives. In this paper, we present an in-depth overview of the various challenges associated with the application of ML in vehicular networks. In addition, we formulate the ML pipeline of CAVs and present various potential security issues associated with the adoption of ML methods. In particular, we focus on the perspective of adversarial ML attacks on CAVs and outline a solution to defend against adversarial attacks in multiple settings

    Adversarial Learning: A Critical Review and Active Learning Study

    Full text link
    This papers consists of two parts. The first is a critical review of prior art on adversarial learning, identifying some significant limitations of previous works. The second part is an experimental study considering adversarial active learning and an investigation of the efficacy of a mixed sample selection strategy for combating an adversary who attempts to disrupt the classifier learning

    A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning

    Full text link
    Due to insufficient training data and the high computational cost to train a deep neural network from scratch, transfer learning has been extensively used in many deep-neural-network-based applications. A commonly used transfer learning approach involves taking a part of a pre-trained model, adding a few layers at the end, and re-training the new layers with a small dataset. This approach, while efficient and widely used, imposes a security vulnerability because the pre-trained model used in transfer learning is usually publicly available, including to potential attackers. In this paper, we show that without any additional knowledge other than the pre-trained model, an attacker can launch an effective and efficient brute force attack that can craft instances of input to trigger each target class with high confidence. We assume that the attacker has no access to any target-specific information, including samples from target classes, re-trained model, and probabilities assigned by Softmax to each class, and thus making the attack target-agnostic. These assumptions render all previous attack models inapplicable, to the best of our knowledge. To evaluate the proposed attack, we perform a set of experiments on face recognition and speech recognition tasks and show the effectiveness of the attack. Our work reveals a fundamental security weakness of the Softmax layer when used in transfer learning settings

    Analysis Methods in Neural Language Processing: A Survey

    Full text link
    The field of natural language processing has seen impressive progress in recent years, with neural network models replacing many of the traditional systems. A plethora of new models have been proposed, many of which are thought to be opaque compared to their feature-rich counterparts. This has led researchers to analyze, interpret, and evaluate neural networks in novel and more fine-grained ways. In this survey paper, we review analysis methods in neural language processing, categorize them according to prominent research trends, highlight existing limitations, and point to potential directions for future work.Comment: Version including the supplementary materials (3 tables), also available at https://boknilev.github.io/nlp-analysis-method

    One pixel attack for fooling deep neural networks

    Full text link
    Recent research has revealed that the output of Deep Neural Networks (DNN) can be easily altered by adding relatively small perturbations to the input vector. In this paper, we analyze an attack in an extremely limited scenario where only one pixel can be modified. For that we propose a novel method for generating one-pixel adversarial perturbations based on differential evolution (DE). It requires less adversarial information (a black-box attack) and can fool more types of networks due to the inherent features of DE. The results show that 67.97% of the natural images in Kaggle CIFAR-10 test dataset and 16.04% of the ImageNet (ILSVRC 2012) test images can be perturbed to at least one target class by modifying just one pixel with 74.03% and 22.91% confidence on average. We also show the same vulnerability on the original CIFAR-10 dataset. Thus, the proposed attack explores a different take on adversarial machine learning in an extreme limited scenario, showing that current DNNs are also vulnerable to such low dimension attacks. Besides, we also illustrate an important application of DE (or broadly speaking, evolutionary computation) in the domain of adversarial machine learning: creating tools that can effectively generate low-cost adversarial attacks against neural networks for evaluating robustness

    Universal Adversarial Perturbations: A Survey

    Full text link
    Over the past decade, Deep Learning has emerged as a useful and efficient tool to solve a wide variety of complex learning problems ranging from image classification to human pose estimation, which is challenging to solve using statistical machine learning algorithms. However, despite their superior performance, deep neural networks are susceptible to adversarial perturbations, which can cause the network's prediction to change without making perceptible changes to the input image, thus creating severe security issues at the time of deployment of such systems. Recent works have shown the existence of Universal Adversarial Perturbations, which, when added to any image in a dataset, misclassifies it when passed through a target model. Such perturbations are more practical to deploy since there is minimal computation done during the actual attack. Several techniques have also been proposed to defend the neural networks against these perturbations. In this paper, we attempt to provide a detailed discussion on the various data-driven and data-independent methods for generating universal perturbations, along with measures to defend against such perturbations. We also cover the applications of such universal perturbations in various deep learning tasks.Comment: 20 pages, 17 figure
    • …
    corecore