856 research outputs found

    A multilinear tongue model derived from speech related MRI data of the human vocal tract

    Get PDF
    We present a multilinear statistical model of the human tongue that captures anatomical and tongue pose related shape variations separately. The model is derived from 3D magnetic resonance imaging data of 11 speakers sustaining speech related vocal tract configurations. The extraction is performed by using a minimally supervised method that uses as basis an image segmentation approach and a template fitting technique. Furthermore, it uses image denoising to deal with possibly corrupt data, palate surface information reconstruction to handle palatal tongue contacts, and a bootstrap strategy to refine the obtained shapes. Our evaluation concludes that limiting the degrees of freedom for the anatomical and speech related variations to 5 and 4, respectively, produces a model that can reliably register unknown data while avoiding overfitting effects. Furthermore, we show that it can be used to generate a plausible tongue animation by tracking sparse motion capture data

    Registration and statistical analysis of the tongue shape during speech production

    Get PDF
    This thesis analyzes the human tongue shape during speech production. First, a semi-supervised approach is derived for estimating the tongue shape from volumetric magnetic resonance imaging data of the human vocal tract. Results of this extraction are used to derive parametric tongue models. Next, a framework is presented for registering sparse motion capture data of the tongue by means of such a model. This method allows to generate full three-dimensional animations of the tongue. Finally, a multimodal and statistical text-to-speech system is developed that is able to synthesize audio and synchronized tongue motion from text.Diese Dissertation beschĂ€ftigt sich mit der Analyse der menschlichen Zungenform wĂ€hrend der Sprachproduktion. ZunĂ€chst wird ein semi-ĂŒberwachtes Verfahren vorgestellt, mit dessen Hilfe sich Zungenformen von volumetrischen Magnetresonanztomographie- Aufnahmen des menschlichen Vokaltrakts schĂ€tzen lassen. Die Ergebnisse dieses Extraktionsverfahrens werden genutzt, um ein parametrisches Zungenmodell zu konstruieren. Danach wird eine Methode hergeleitet, die ein solches Modell nutzt, um spĂ€rliche Bewegungsaufnahmen der Zunge zu registrieren. Dieser Ansatz erlaubt es, dreidimensionale Animationen der Zunge zu erstellen. Zuletzt wird ein multimodales und statistisches Text-to-Speech-System entwickelt, das in der Lage ist, Audio und die dazu synchrone Zungenbewegung zu synthetisieren.German Research Foundatio

    Fast upper airway magnetic resonance imaging for assessment of speech production and sleep apnea

    Get PDF
    The human upper airway is involved in various functions, including speech, swallowing, and respiration. Magnetic resonance imaging (MRI) can visualize the motion of the upper airway and has been used in scientific studies to understand the dynamics of vocal tract shaping during speech and for assessment of upper airway abnormalities related to obstructive sleep apnea and swallowing disorders. Acceleration technologies in MRI are crucial in improving spatiotemporal resolution or spatial coverage. Recent trends in technical aspects of upper airway MRI are to develop state-of-the-art image acquisition methods for improved dynamic imaging of the upper airway and develop automatic image analysis methods for efficient and accurate quantification of upper airway parameters of interest. This review covers the fast upper airway magnetic resonance (MR) acquisition and reconstruction, MR experimental issues, image analysis techniques, and applications, mainly with respect to studies of speech production and sleep apnea

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends

    Cardiac magnetic resonance assessment of central and peripheral vascular function in patients undergoing renal sympathetic denervation as predictor for blood pressure response

    Get PDF
    Background: Most trials regarding catheter-based renal sympathetic denervation (RDN) describe a proportion of patients without blood pressure response. Recently, we were able to show arterial stiffness, measured by invasive pulse wave velocity (IPWV), seems to be an excellent predictor for blood pressure response. However, given the invasiveness, IPWV is less suitable as a selection criterion for patients undergoing RDN. Consequently, we aimed to investigate the value of cardiac magnetic resonance (CMR) based measures of arterial stiffness in predicting the outcome of RDN compared to IPWV as reference. Methods: Patients underwent CMR prior to RDN to assess ascending aortic distensibility (AAD), total arterial compliance (TAC), and systemic vascular resistance (SVR). In a second step, central aortic blood pressure was estimated from ascending aortic area change and flow sequences and used to re-calculate total arterial compliance (cTAC). Additionally, IPWV was acquired. Results: Thirty-two patients (24 responders and 8 non-responders) were available for analysis. AAD, TAC and cTAC were higher in responders, IPWV was higher in non-responders. SVR was not different between the groups. Patients with AAD, cTAC or TAC above median and IPWV below median had significantly better BP response. Receiver operating characteristic (ROC) curves predicting blood pressure response for IPWV, AAD, cTAC and TAC revealed areas under the curve of 0.849, 0.828, 0.776 and 0.753 (p = 0.004, 0.006, 0.021 and 0.035). Conclusions: Beyond IPWV, AAD, cTAC and TAC appear as useful outcome predictors for RDN in patients with hypertension. CMR-derived markers of arterial stiffness might serve as non-invasive selection criteria for RDN

    Magnetic resonance imaging of the vocal tract: techniques and applications

    Get PDF
    Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set-up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for each articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measurements of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling

    Filter Design and Consistency Evaluation for 3D Tongue Motion Estimation using Harmonic Phase Analysis Method

    Get PDF
    Understanding patterns of tongue motion in speech using 3D motion estimation is challenging. Harmonic phase analysis has been used to perform noninvasive tongue motion and strain estimation using tagged magnetic resonance imaging (MRI). Two main contributions have been made in this thesis. First, the filtering process, which is used to produce harmonic phase images used for tissue tracking, influences the estimation accuracy. For this work, we evaluated different filtering approaches, and propose a novel high-pass filter for volumes tagged in individual directions. Testing was done using an open benchmarking dataset and synthetic images obtained using a mechanical model. Second, the datasets with inconsistent motion need to be excluded to yield meaningful motion estimation. For this work, we used a tracking-based method to evaluate the motion consistency between datasets and gave a strategy to identify the inconsistent dataset. Experiments including 2 normal subjects were done to validate our method. In all, the first work about 3D filter design improves the motion estimation accuracy and the second work about motion consistency test ensures the meaningfulness of the estimation results
    • 

    corecore