868 research outputs found

    Automatic segmentation, detection and quantification of coronary artery stenoses on CTA

    Get PDF
    Accurate detection and quantification of coronary artery stenoses is an essential requirement for treatment planning of patients with suspected coronary artery disease. We present a method to automatically detect and quantify coronary artery stenoses in computed tomography coronary angiography. First, centerlines are extracted using a two-point minimum cost path approach and a subsequent refinement step. The resulting centerlines are used as an initialization for lumen segmentation, performed using graph cuts. Then, the expected diameter of the healthy lumen is estimated by applying robust kernel regression to the coronary artery lumen diameter profile. Finally, stenoses are detected and quantified by computing the difference between estimated and expected diameter profiles. We evaluated our method using the data provided in the Coronary Artery Stenoses Detection and Quantification Evaluation Framework. Using 30 testing datasets, the method achieved a detection sensitivity of 29 % and a positive predi

    Robust semi-automated path extraction for visualising stenosis of the coronary arteries

    Get PDF
    Computed tomography angiography (CTA) is useful for diagnosing and planning treatment of heart disease. However, contrast agent in surrounding structures (such as the aorta and left ventricle) makes 3-D visualisation of the coronary arteries difficult. This paper presents a composite method employing segmentation and volume rendering to overcome this issue. A key contribution is a novel Fast Marching minimal path cost function for vessel centreline extraction. The resultant centreline is used to compute a measure of vessel lumen, which indicates the degree of stenosis (narrowing of a vessel). Two volume visualisation techniques are presented which utilise the segmented arteries and lumen measure. The system is evaluated and demonstrated using synthetic and clinically obtained datasets

    Quantitative image analysis in cardiac CT angiography

    Get PDF

    Quantitative image analysis in cardiac CT angiography

    Get PDF

    Automated detection of calcified plaque using higher-order spectra cumulant technique in computer tomography angiography images

    Get PDF
    Cardiovascular disease continues to be the leading cause of death globally. Often, it stems from atherosclerosis, which can trigger substantial variations in the coronary arteries, possibly causing coronary artery disease (CAD). Coronary artery calcification is known to be a strong and independent forecaster of CAD. Hence, coronary computer tomography angiography (CTA) has become a fundamental noninvasive imaging tool to characterize coronary artery plaques. In this article, an automated algorithm is presented to uncover the presence of a calcified plaque, using 2060 CTA images acquired from 60 patients. Higher-order spectra cumulants were extracted from each image, thereby providing 2448 descriptive features per image. The features were then reduced using numerous well-established techniques, and ranked according to t value. Subsequently, the reduced features were input to several classifiers to achieve the best diagnostic accuracy with a minimum number of features. Optimal results were obtained using the support vector machine with a radial basis function, having 22 features obtained with the multiple factor analysis feature reduction algorithm. The accuracy, positive predictive value, sensitivity, and specificity obtained were 95.83%, 97.05%, 94.54%, and 97.13%, respectively. Based on these results, the technique could be useful to automatically and accurately identify calcified plaque evident in CTA images, and may therefore become an important tool to help reduce procedural costs and patient radiation dose
    • …
    corecore