3,139 research outputs found

    Adversarial Framework for Unsupervised Learning of Motion Dynamics in Videos

    Full text link
    Human behavior understanding in videos is a complex, still unsolved problem and requires to accurately model motion at both the local (pixel-wise dense prediction) and global (aggregation of motion cues) levels. Current approaches based on supervised learning require large amounts of annotated data, whose scarce availability is one of the main limiting factors to the development of general solutions. Unsupervised learning can instead leverage the vast amount of videos available on the web and it is a promising solution for overcoming the existing limitations. In this paper, we propose an adversarial GAN-based framework that learns video representations and dynamics through a self-supervision mechanism in order to perform dense and global prediction in videos. Our approach synthesizes videos by 1) factorizing the process into the generation of static visual content and motion, 2) learning a suitable representation of a motion latent space in order to enforce spatio-temporal coherency of object trajectories, and 3) incorporating motion estimation and pixel-wise dense prediction into the training procedure. Self-supervision is enforced by using motion masks produced by the generator, as a co-product of its generation process, to supervise the discriminator network in performing dense prediction. Performance evaluation, carried out on standard benchmarks, shows that our approach is able to learn, in an unsupervised way, both local and global video dynamics. The learned representations, then, support the training of video object segmentation methods with sensibly less (about 50%) annotations, giving performance comparable to the state of the art. Furthermore, the proposed method achieves promising performance in generating realistic videos, outperforming state-of-the-art approaches especially on motion-related metrics

    Semi-Supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have been immensely successful in many high-level computer vision tasks given large labeled datasets. However, for video semantic object segmentation, a domain where labels are scarce, effectively exploiting the representation power of CNN with limited training data remains a challenge. Simply borrowing the existing pretrained CNN image recognition model for video segmentation task can severely hurt performance. We propose a semi-supervised approach to adapting CNN image recognition model trained from labeled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of video data. By explicitly modeling and compensating for the domain shift from the source domain to the target domain, this proposed approach underpins a robust semantic object segmentation method against the changes in appearance, shape and occlusion in natural videos. We present extensive experiments on challenging datasets that demonstrate the superior performance of our approach compared with the state-of-the-art methods

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    A survey on trajectory clustering analysis

    Full text link
    This paper comprehensively surveys the development of trajectory clustering. Considering the critical role of trajectory data mining in modern intelligent systems for surveillance security, abnormal behavior detection, crowd behavior analysis, and traffic control, trajectory clustering has attracted growing attention. Existing trajectory clustering methods can be grouped into three categories: unsupervised, supervised and semi-supervised algorithms. In spite of achieving a certain level of development, trajectory clustering is limited in its success by complex conditions such as application scenarios and data dimensions. This paper provides a holistic understanding and deep insight into trajectory clustering, and presents a comprehensive analysis of representative methods and promising future directions

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    Adversarial Constraint Learning for Structured Prediction

    Full text link
    Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constraints and using them for supervision, bypassing the difficulty of using domain expertise to manually specify constraints. Learning requires a black-box simulator of structured outputs, which generates valid labels, but need not model their corresponding inputs or the input-label relationship. At training time, we constrain the model to produce outputs that cannot be distinguished from simulated labels by adversarial training. Providing our framework with a small number of labeled inputs gives rise to a new semi-supervised structured prediction model; we evaluate this model on multiple tasks --- tracking, pose estimation and time series prediction --- and find that it achieves high accuracy with only a small number of labeled inputs. In some cases, no labels are required at all.Comment: To appear at IJCAI 201

    SfM-Net: Learning of Structure and Motion from Video

    Full text link
    We propose SfM-Net, a geometry-aware neural network for motion estimation in videos that decomposes frame-to-frame pixel motion in terms of scene and object depth, camera motion and 3D object rotations and translations. Given a sequence of frames, SfM-Net predicts depth, segmentation, camera and rigid object motions, converts those into a dense frame-to-frame motion field (optical flow), differentiably warps frames in time to match pixels and back-propagates. The model can be trained with various degrees of supervision: 1) self-supervised by the re-projection photometric error (completely unsupervised), 2) supervised by ego-motion (camera motion), or 3) supervised by depth (e.g., as provided by RGBD sensors). SfM-Net extracts meaningful depth estimates and successfully estimates frame-to-frame camera rotations and translations. It often successfully segments the moving objects in the scene, even though such supervision is never provided

    Unsupervised Object-Level Video Summarization with Online Motion Auto-Encoder

    Full text link
    Unsupervised video summarization plays an important role on digesting, browsing, and searching the ever-growing videos every day, and the underlying fine-grained semantic and motion information (i.e., objects of interest and their key motions) in online videos has been barely touched. In this paper, we investigate a pioneer research direction towards the fine-grained unsupervised object-level video summarization. It can be distinguished from existing pipelines in two aspects: extracting key motions of participated objects, and learning to summarize in an unsupervised and online manner. To achieve this goal, we propose a novel online motion Auto-Encoder (online motion-AE) framework that functions on the super-segmented object motion clips. Comprehensive experiments on a newly-collected surveillance dataset and public datasets have demonstrated the effectiveness of our proposed method

    Recovering Spatiotemporal Correspondence between Deformable Objects by Exploiting Consistent Foreground Motion in Video

    Full text link
    Given unstructured videos of deformable objects, we automatically recover spatiotemporal correspondences to map one object to another (such as animals in the wild). While traditional methods based on appearance fail in such challenging conditions, we exploit consistency in object motion between instances. Our approach discovers pairs of short video intervals where the object moves in a consistent manner and uses these candidates as seeds for spatial alignment. We model the spatial correspondence between the point trajectories on the object in one interval to those in the other using a time-varying Thin Plate Spline deformation model. On a large dataset of tiger and horse videos, our method automatically aligns thousands of pairs of frames to a high accuracy, and outperforms the popular SIFT Flow algorithm.Comment: 9 pages, 14 figures. This article is obsolete. Its contents are now covered in arXiv:1511.09319, where we discuss a comprehensive system for behavior discovery and spatial alignment of articulated object classes from unstructured video (available at https://arxiv.org/abs/1511.09319

    Video Object Segmentation with Language Referring Expressions

    Full text link
    Most state-of-the-art semi-supervised video object segmentation methods rely on a pixel-accurate mask of a target object provided for the first frame of a video. However, obtaining a detailed segmentation mask is expensive and time-consuming. In this work we explore an alternative way of identifying a target object, namely by employing language referring expressions. Besides being a more practical and natural way of pointing out a target object, using language specifications can help to avoid drift as well as make the system more robust to complex dynamics and appearance variations. Leveraging recent advances of language grounding models designed for images, we propose an approach to extend them to video data, ensuring temporally coherent predictions. To evaluate our method we augment the popular video object segmentation benchmarks, DAVIS'16 and DAVIS'17 with language descriptions of target objects. We show that our language-supervised approach performs on par with the methods which have access to a pixel-level mask of the target object on DAVIS'16 and is competitive to methods using scribbles on the challenging DAVIS'17 dataset.Comment: ACCV 2018: 14th Asian Conference on Computer Visio
    corecore