3,862 research outputs found

    M2H-GAN: A GAN-based Mapping from Machine to Human Transcripts for Speech Understanding

    Get PDF
    International audienceDeep learning is at the core of recent spoken language understanding (SLU) related tasks. More precisely, deep neu-ral networks (DNNs) drastically increased the performances of SLU systems, and numerous architectures have been proposed. In the real-life context of theme identification of telephone conversations , it is common to hold both a human, manual (TRS) and an automatically transcribed (ASR) versions of the conversations. Nonetheless, and due to production constraints, only the ASR transcripts are considered to build automatic classi-fiers. TRS transcripts are only used to measure the performances of ASR systems. Moreover, the recent performances in term of classification accuracy, obtained by DNN related systems are close to the performances reached by humans, and it becomes difficult to further increase the performances by only considering the ASR transcripts. This paper proposes to dis-tillates the TRS knowledge available during the training phase within the ASR representation, by using a new generative adver-sarial network called M2H-GAN to generate a TRS-like version of an ASR document, to improve the theme identification performances

    Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

    Full text link
    State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.Comment: 4 pages + 1 reference
    corecore