2,626 research outputs found

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure

    Self Supervised Adversarial Domain Adaptation for Cross-Corpus and Cross-Language Speech Emotion Recognition

    Full text link
    Despite the recent advancement in speech emotion recognition (SER) within a single corpus setting, the performance of these SER systems degrades significantly for cross-corpus and cross-language scenarios. The key reason is the lack of generalisation in SER systems towards unseen conditions, which causes them to perform poorly in cross-corpus and cross-language settings. Recent studies focus on utilising adversarial methods to learn domain generalised representation for improving cross-corpus and cross-language SER to address this issue. However, many of these methods only focus on cross-corpus SER without addressing the cross-language SER performance degradation due to a larger domain gap between source and target language data. This contribution proposes an adversarial dual discriminator (ADDi) network that uses the three-players adversarial game to learn generalised representations without requiring any target data labels. We also introduce a self-supervised ADDi (sADDi) network that utilises self-supervised pre-training with unlabelled data. We propose synthetic data generation as a pretext task in sADDi, enabling the network to produce emotionally discriminative and domain invariant representations and providing complementary synthetic data to augment the system. The proposed model is rigorously evaluated using five publicly available datasets in three languages and compared with multiple studies on cross-corpus and cross-language SER. Experimental results demonstrate that the proposed model achieves improved performance compared to the state-of-the-art methods.Comment: Accepted in IEEE Transactions on Affective Computin

    Audio Event Detection using Weakly Labeled Data

    Full text link
    Acoustic event detection is essential for content analysis and description of multimedia recordings. The majority of current literature on the topic learns the detectors through fully-supervised techniques employing strongly labeled data. However, the labels available for majority of multimedia data are generally weak and do not provide sufficient detail for such methods to be employed. In this paper we propose a framework for learning acoustic event detectors using only weakly labeled data. We first show that audio event detection using weak labels can be formulated as an Multiple Instance Learning problem. We then suggest two frameworks for solving multiple-instance learning, one based on support vector machines, and the other on neural networks. The proposed methods can help in removing the time consuming and expensive process of manually annotating data to facilitate fully supervised learning. Moreover, it can not only detect events in a recording but can also provide temporal locations of events in the recording. This helps in obtaining a complete description of the recording and is notable since temporal information was never known in the first place in weakly labeled data.Comment: ACM Multimedia 201

    Recent advances in LVCSR : A benchmark comparison of performances

    Get PDF
    Large Vocabulary Continuous Speech Recognition (LVCSR), which is characterized by a high variability of the speech, is the most challenging task in automatic speech recognition (ASR). Believing that the evaluation of ASR systems on relevant and common speech corpora is one of the key factors that help accelerating research, we present, in this paper, a benchmark comparison of the performances of the current state-of-the-art LVCSR systems over different speech recognition tasks. Furthermore, we put objectively into evidence the best performing technologies and the best accuracy achieved so far in each task. The benchmarks have shown that the Deep Neural Networks and Convolutional Neural Networks have proven their efficiency on several LVCSR tasks by outperforming the traditional Hidden Markov Models and Guaussian Mixture Models. They have also shown that despite the satisfying performances in some LVCSR tasks, the problem of large-vocabulary speech recognition is far from being solved in some others, where more research efforts are still needed

    Deep Spoken Keyword Spotting:An Overview

    Get PDF
    Spoken keyword spotting (KWS) deals with the identification of keywords in audio streams and has become a fast-growing technology thanks to the paradigm shift introduced by deep learning a few years ago. This has allowed the rapid embedding of deep KWS in a myriad of small electronic devices with different purposes like the activation of voice assistants. Prospects suggest a sustained growth in terms of social use of this technology. Thus, it is not surprising that deep KWS has become a hot research topic among speech scientists, who constantly look for KWS performance improvement and computational complexity reduction. This context motivates this paper, in which we conduct a literature review into deep spoken KWS to assist practitioners and researchers who are interested in this technology. Specifically, this overview has a comprehensive nature by covering a thorough analysis of deep KWS systems (which includes speech features, acoustic modeling and posterior handling), robustness methods, applications, datasets, evaluation metrics, performance of deep KWS systems and audio-visual KWS. The analysis performed in this paper allows us to identify a number of directions for future research, including directions adopted from automatic speech recognition research and directions that are unique to the problem of spoken KWS

    Learning from Very Few Samples: A Survey

    Full text link
    Few sample learning (FSL) is significant and challenging in the field of machine learning. The capability of learning and generalizing from very few samples successfully is a noticeable demarcation separating artificial intelligence and human intelligence since humans can readily establish their cognition to novelty from just a single or a handful of examples whereas machine learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability. Despite the long history dated back to the early 2000s and the widespread attention in recent years with booming deep learning technologies, little surveys or reviews for FSL are available until now. In this context, we extensively review 300+ papers of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive survey for FSL. In this survey, we review the evolution history as well as the current progress on FSL, categorize FSL approaches into the generative model based and discriminative model based kinds in principle, and emphasize particularly on the meta learning based FSL approaches. We also summarize several recently emerging extensional topics of FSL and review the latest advances on these topics. Furthermore, we highlight the important FSL applications covering many research hotspots in computer vision, natural language processing, audio and speech, reinforcement learning and robotic, data analysis, etc. Finally, we conclude the survey with a discussion on promising trends in the hope of providing guidance and insights to follow-up researches.Comment: 30 page

    Cross-Domain Car Detection Model with Integrated Convolutional Block Attention Mechanism

    Full text link
    Car detection, particularly through camera vision, has become a major focus in the field of computer vision and has gained widespread adoption. While current car detection systems are capable of good detection, reliable detection can still be challenging due to factors such as proximity between the car, light intensity, and environmental visibility. To address these issues, we propose a cross-domain car detection model that we apply to car recognition for autonomous driving and other areas. Our model includes several novelties: 1)Building a complete cross-domain target detection framework. 2)Developing an unpaired target domain picture generation module with an integrated convolutional attention mechanism. 3)Adopting Generalized Intersection over Union (GIOU) as the loss function of the target detection framework. 4)Designing an object detection model integrated with two-headed Convolutional Block Attention Module(CBAM). 5)Utilizing an effective data enhancement method. To evaluate the model's effectiveness, we performed a reduced will resolution process on the data in the SSLAD dataset and used it as the benchmark dataset for our task. Experimental results show that the performance of the cross-domain car target detection model improves by 40% over the model without our framework, and our improvements have a significant impact on cross-domain car recognition
    corecore