3,268 research outputs found

    Colorization as a Proxy Task for Visual Understanding

    Full text link
    We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.Comment: CVPR 2017 (Project page: http://people.cs.uchicago.edu/~larsson/color-proxy/

    Semi-supervised Semantic Segmentation with Error Localization Network

    Full text link
    This paper studies semi-supervised learning of semantic segmentation, which assumes that only a small portion of training images are labeled and the others remain unlabeled. The unlabeled images are usually assigned pseudo labels to be used in training, which however often causes the risk of performance degradation due to the confirmation bias towards errors on the pseudo labels. We present a novel method that resolves this chronic issue of pseudo labeling. At the heart of our method lies error localization network (ELN), an auxiliary module that takes an image and its segmentation prediction as input and identifies pixels whose pseudo labels are likely to be wrong. ELN enables semi-supervised learning to be robust against inaccurate pseudo labels by disregarding label noises during training and can be naturally integrated with self-training and contrastive learning. Moreover, we introduce a new learning strategy for ELN that simulates plausible and diverse segmentation errors during training of ELN to enhance its generalization. Our method is evaluated on PASCAL VOC 2012 and Cityscapes, where it outperforms all existing methods in every evaluation setting

    Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation

    Full text link
    Recent studies on semi-supervised semantic segmentation (SSS) have seen fast progress. Despite their promising performance, current state-of-the-art methods tend to increasingly complex designs at the cost of introducing more network components and additional training procedures. Differently, in this work, we follow a standard teacher-student framework and propose AugSeg, a simple and clean approach that focuses mainly on data perturbations to boost the SSS performance. We argue that various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning. Specifically, we adopt a simplified intensity-based augmentation that selects a random number of data transformations with uniformly sampling distortion strengths from a continuous space. Based on the estimated confidence of the model on different unlabeled samples, we also randomly inject labelled information to augment the unlabeled samples in an adaptive manner. Without bells and whistles, our simple AugSeg can readily achieve new state-of-the-art performance on SSS benchmarks under different partition protocols.Comment: 10 pages, 8 table

    Instance-specific and Model-adaptive Supervision for Semi-supervised Semantic Segmentation

    Full text link
    Recently, semi-supervised semantic segmentation has achieved promising performance with a small fraction of labeled data. However, most existing studies treat all unlabeled data equally and barely consider the differences and training difficulties among unlabeled instances. Differentiating unlabeled instances can promote instance-specific supervision to adapt to the model's evolution dynamically. In this paper, we emphasize the cruciality of instance differences and propose an instance-specific and model-adaptive supervision for semi-supervised semantic segmentation, named iMAS. Relying on the model's performance, iMAS employs a class-weighted symmetric intersection-over-union to evaluate quantitative hardness of each unlabeled instance and supervises the training on unlabeled data in a model-adaptive manner. Specifically, iMAS learns from unlabeled instances progressively by weighing their corresponding consistency losses based on the evaluated hardness. Besides, iMAS dynamically adjusts the augmentation for each instance such that the distortion degree of augmented instances is adapted to the model's generalization capability across the training course. Not integrating additional losses and training procedures, iMAS can obtain remarkable performance gains against current state-of-the-art approaches on segmentation benchmarks under different semi-supervised partition protocols
    • …
    corecore