115 research outputs found

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    Proposing a new method of image classification based on the AdaBoost deep belief network hybrid method

    Get PDF
    Image classification has different applications. Up to now, various algorithms have been presented for image classification. Each of these method has its own weaknesses and strengths. Reducing error rate is an issue which much researches have been carried out about it. This research intends to optimize the problem with hybrid methods and deep learning. The hybrid methods were developed to improve the results of the single-component methods. On the other hand, a deep belief network (DBN) is a generative probabilistic modelwith multiple layers of latent variables and is used to solve the unlabeled problems. In fact, this method is anunsupervised method, in which all layers are one-way directed layers except for the last layer. So far, various methods have been proposed for image classification, and the goal of this research project was to use a combination of the AdaBoost method and the deep belief network method to classify images. The other objective was to obtain better results than the previous results. In this project, a combination of the deep belief network and AdaBoost method was used to boost learning and the network potential was enhanced by making the entire network recursive. This method was tested on the MINIST dataset and the results were indicative of a decrease in the error rate with the proposed method as compared to the AdaBoost and deep belief network methods.
    • …
    corecore