5,295 research outputs found

    Implicitly Constrained Semi-Supervised Linear Discriminant Analysis

    Full text link
    Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data, in terms of the log-likelihood of unseen objects.Comment: 6 pages, 3 figures and 3 tables. International Conference on Pattern Recognition (ICPR) 2014, Stockholm, Swede

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page
    corecore