15,055 research outputs found

    Hybrid Models with Deep and Invertible Features

    Full text link
    We propose a neural hybrid model consisting of a linear model defined on a set of features computed by a deep, invertible transformation (i.e. a normalizing flow). An attractive property of our model is that both p(features), the density of the features, and p(targets | features), the predictive distribution, can be computed exactly in a single feed-forward pass. We show that our hybrid model, despite the invertibility constraints, achieves similar accuracy to purely predictive models. Moreover the generative component remains a good model of the input features despite the hybrid optimization objective. This offers additional capabilities such as detection of out-of-distribution inputs and enabling semi-supervised learning. The availability of the exact joint density p(targets, features) also allows us to compute many quantities readily, making our hybrid model a useful building block for downstream applications of probabilistic deep learning.Comment: ICML 201

    Semi-supervised Multi-sensor Classification via Consensus-based Multi-View Maximum Entropy Discrimination

    Full text link
    In this paper, we consider multi-sensor classification when there is a large number of unlabeled samples. The problem is formulated under the multi-view learning framework and a Consensus-based Multi-View Maximum Entropy Discrimination (CMV-MED) algorithm is proposed. By iteratively maximizing the stochastic agreement between multiple classifiers on the unlabeled dataset, the algorithm simultaneously learns multiple high accuracy classifiers. We demonstrate that our proposed method can yield improved performance over previous multi-view learning approaches by comparing performance on three real multi-sensor data sets.Comment: 5 pages, 4 figures, Accepted in 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 15
    • …
    corecore