13,569 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Ask the GRU: Multi-Task Learning for Deep Text Recommendations

    Full text link
    In a variety of application domains the content to be recommended to users is associated with text. This includes research papers, movies with associated plot summaries, news articles, blog posts, etc. Recommendation approaches based on latent factor models can be extended naturally to leverage text by employing an explicit mapping from text to factors. This enables recommendations for new, unseen content, and may generalize better, since the factors for all items are produced by a compactly-parametrized model. Previous work has used topic models or averages of word embeddings for this mapping. In this paper we present a method leveraging deep recurrent neural networks to encode the text sequence into a latent vector, specifically gated recurrent units (GRUs) trained end-to-end on the collaborative filtering task. For the task of scientific paper recommendation, this yields models with significantly higher accuracy. In cold-start scenarios, we beat the previous state-of-the-art, all of which ignore word order. Performance is further improved by multi-task learning, where the text encoder network is trained for a combination of content recommendation and item metadata prediction. This regularizes the collaborative filtering model, ameliorating the problem of sparsity of the observed rating matrix.Comment: 8 page

    An Efficient Cross-Domain Recommendation Technique in Cold-Start Situations

    Get PDF
    Most of the recent studies on recommender systems are focused on single domain recommendation systems. In the single domain recommendation systems, the items that are used for training and test data set are belongs to within the same domain. Cross-site domains or item recommendations in multi-domain environment are available in Amazon i.e. it incorporate two or more domains. Few research studies are done on the cross-site recommendation systems. Cross-site recommendations provide the relationship between the two sets of items from various domains. They can provide the extra information about the users of a target domain and recommendations will be done based on that. In this paper, we will study cross-site recommendation model on the cold start situation, where the purchase history is not available for the new user. Cold-start is the well-known issue in the area of recommendation systems. It seriously affect the recommendations in the collaborative filtering approaches. In this paper, we propose a new solution to recommend products from e-commerce websites to users at social networking sites. a noteworthy issue is how to leverage knowledge from social networking websites when there is no purchase history for a customer especially in cold start situations.in particular we proposed the solution for cold start recommendation by linking the users across social networking sites and e-commerce websites i.e. customers who have social network identities and have purchased on e-commerce websites as a bridge to map user’s social networking features in to another feature representation which can be easier for product recommendation. Here we propose to learn by using recurrent neural networks both user’s and product’s feature representations called user embedding and product embedding from the data collected from e-commerce website and then apply a modified gradient boosting trees method to transform user’s social networking features in to user embedding. Once found, then develop a feature-based matrix factorization approach which can leverage the learnt user embedding for the cold-start product recommendation. Experimental results shows that our approach effectively works and gives the best recommended results in cold start situations

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape
    • …
    corecore