968 research outputs found

    Data-driven remote fault detection and diagnosis of HVAC terminal units using machine learning techniques

    Get PDF
    The modernising and retrofitting of older buildings has created a drive to install building management systems (BMS) aimed to assist building managers pave the way towards smarter energy use, improve maintenance and increase occupants comfort inside a building. BMS is a computerised control system that controls and monitors a building’s equipment, services such as lighting, ventilation, power systems, fire and security systems, etc. Buildings are becoming more and more complex environments and energy consumption has globally increased to 40% in the past decades. Still, there is no generalised solution or standardisation method available to maintain and handle a building’s energy consumption. Thus this research aims to discover an intelligent solution for the building’s electrical and mechanical units that consume the most power. Indeed, remote control and monitoring of Heating, Ventilation and Air-Conditioning (HVAC) units based on the received information through the thousands of sensors and actuators, is a crucial task in BMS. Thus, it is a foremost task to identify faulty units automatically to optimise running and energy usage. Therefore, a comprehensive analysis on HVAC data and the development of computational intelligent methods for automatic fault detection and diagnosis is been presented here for a period of July 2015 to October 2015 on a real commercial building in London. This study mainly investigated one of the HVAC sub-units namely Fan-coil unit’s terminal unit (TU). It comprises of the three stages: data collection, pre-processing, and machine learning. Further to the aspects of machine learning algorithms for TU behaviour identification by employing unsupervised, supervised, and semi-supervised learning algorithms and their combination was employed to make an automatic intelligent solution for building services. The accuracy of these employed algorithms have been measured in both training and testing phases, results compared with different suitable algorithms, and validated through statistical measures. This research provides an intelligent solution for the real time prediction through the development of an effective automatic fault detection and diagnosis system creating a smarter way to handle the BMS data for energy optimisation

    Semi-supervised transfer learning methodology for fault detection and diagnosis in air-handling units

    Get PDF
    Heating, ventilation and air-conditioning (HVAC) systems are the major energy consumers among buildings’ equipment. Reliable fault detection and diagnosis schemes can effectively reduce their energy consumption and maintenance costs. In this respect, data-driven approaches have shown impressive results, but their accuracy depends on the availability of representative data to train the models, which is not common in real applications. For this reason, transfer learning is attracting growing attention since it tackles the problem by leveraging the knowledge between datasets, increasing the representativeness of fault scenarios. However, to date, research on transfer learning for heating, ventilation and air-conditioning has mostly been focused on learning algorithmic, overlooking the importance of a proper domain similarity analysis over the available data. Thus, this study proposes the design of a transfer learning approach based on a specific data selection methodology to tackle dissimilarity issues. The procedure is supported by neural network models and the analysis of eventual prediction uncertainties resulting from the assessment of the target application samples. To verify the proposed methodology, it is applied to a semi-supervised transfer learning case study composed of two publicly available air-handling unit datasets containing some fault scenarios. Results emphasize the potential of the proposed domain dissimilarity analysis reaching a classification accuracy of 92% under a transfer learning framework, an increase of 37% in comparison to classical approaches.Objectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats SosteniblesObjectius de Desenvolupament Sostenible::12 - Producció i Consum ResponsablesPostprint (published version

    Fault Detection and RUL Estimation for Railway HVAC Systems Using a Hybrid Model-Based Approach

    Get PDF
    Heating, ventilation, and air conditioning (HVAC) systems installed in a passenger train carriage are critical systems, whose failures can affect people or the environment. This, together with restrictive regulations, results in the replacement of critical components in initial stages of degradation, as well as a lack of data on advanced stages of degradation. This paper proposes a hybrid model-based approach (HyMA) to overcome the lack of failure data on a HVAC system installed in a passenger train carriage. The proposed HyMA combines physics-based models with data-driven models to deploy diagnostic and prognostic processes for a complex and critical system. The physics-based model generates data on healthy and faulty working conditions; the faults are generated in different levels of degradation and can appear individually or together. A fusion of synthetic data and measured data is used to train, validate, and test the proposed hybrid model (HyM) for fault detection and diagnostics (FDD) of the HVAC system. The model obtains an accuracy of 92.60%. In addition, the physics-based model generates run-to-failure data for the HVAC air filter to develop a remaining useful life (RUL) prediction model, the RUL estimations performed obtained an accuracy in the range of 95.21–97.80% Both models obtain a remarkable accuracy. The development presented will result in a tool which provides relevant information on the health state of the HVAC system, extends its useful life, reduces its life cycle cost, and improves its reliability and availability; thus enhancing the sustainability of the system.Research was funded by the Basque Government, through ELKARTEK (ref. KK-2020/00049) funding grant

    Fault Detection and Diagnosis Encyclopedia for Building Systems:A Systematic Review

    Get PDF
    This review aims to provide an up-to-date, comprehensive, and systematic summary of fault detection and diagnosis (FDD) in building systems. The latter was performed through a defined systematic methodology with the final selection of 221 studies. This review provides insights into four topics: (1) glossary framework of the FDD processes; (2) a classification scheme using energy system terminologies as the starting point; (3) the data, code, and performance evaluation metrics used in the reviewed literature; and (4) future research outlooks. FDD is a known and well-developed field in the aerospace, energy, and automotive sector. Nevertheless, this study found that FDD for building systems is still at an early stage worldwide. This was evident through the ongoing development of algorithms for detecting and diagnosing faults in building systems and the inconsistent use of the terminologies and definitions. In addition, there was an apparent lack of data statements in the reviewed articles, which compromised the reproducibility, and thus the practical development in this field. Furthermore, as data drove the research activity, the found dataset repositories and open code are also presented in this review. Finally, all data and documentation presented in this review are open and available in a GitHub repository

    Continuous Monitoring and Automated Fault Detection and Diagnosis of Large Air-Handling Units

    Get PDF

    Continuous Monitoring and Automated Fault Detection and Diagnosis of Large Air-Handling Units

    Get PDF

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones

    Autonomic management of a building's multi-HVAC system start-up

    Get PDF
    Most studies about the control, automation, optimization and supervision of building HVAC systems concentrate on the steady-state regime, i.e., when the equipment is already working at its setpoints. The originality of the current work consists of proposing the optimization of building multi-HVAC systems from start-up until they reach the setpoint, making the transition to steady state-based strategies smooth. The proposed approach works on the transient regime of multi-HVAC systems optimizing contradictory objectives, such as the desired comfort and energy costs, based on the "Autonomic Cycle of Data Analysis Tasks" concept. In this case, the autonomic cycle is composed of two data analysis tasks: one for determining if the system is going towards the defined operational setpoint, and if that is not the case, another task for reconfiguring the operational mode of the multi-HVAC system to redirect it. The first task uses machine learning techniques to build detection and prediction models, and the second task defines a reconfiguration model using multiobjective evolutionary algorithms. This proposal is proven in a real case study that characterizes a particular multi-HVAC system and its operational setpoints. The performance obtained from the experiments in diverse situations is impressive since there is a high level of conformity for the multi-HVAC system to reach the setpoint and deliver the operation to the steady-state smoothly, avoiding overshooting and other non-desirable transitional effects.European CommissionJunta de Comunidades de Castilla-La ManchaMinisterio de Ciencia e InnovaciĂł
    • …
    corecore