21,546 research outputs found

    Data Mining and Machine Learning in Astronomy

    Full text link
    We review the current state of data mining and machine learning in astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. If used correctly, it can be a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, promising great scientific advance. However, if misused, it can be little more than the black-box application of complex computing algorithms that may give little physical insight, and provide questionable results. Here, we give an overview of the entire data mining process, from data collection through to the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines, applications from a broad range of astronomy, emphasizing those where data mining techniques directly resulted in improved science, and important current and future directions, including probability density functions, parallel algorithms, petascale computing, and the time domain. We conclude that, so long as one carefully selects an appropriate algorithm, and is guided by the astronomical problem at hand, data mining can be very much the powerful tool, and not the questionable black box.Comment: Published in IJMPD. 61 pages, uses ws-ijmpd.cls. Several extra figures, some minor additions to the tex

    Semi-Supervised Overlapping Community Finding based on Label Propagation with Pairwise Constraints

    Get PDF
    Algorithms for detecting communities in complex networks are generally unsupervised, relying solely on the structure of the network. However, these methods can often fail to uncover meaningful groupings that reflect the underlying communities in the data, particularly when those structures are highly overlapping. One way to improve the usefulness of these algorithms is by incorporating additional background information, which can be used as a source of constraints to direct the community detection process. In this work, we explore the potential of semi-supervised strategies to improve algorithms for finding overlapping communities in networks. Specifically, we propose a new method, based on label propagation, for finding communities using a limited number of pairwise constraints. Evaluations on synthetic and real-world datasets demonstrate the potential of this approach for uncovering meaningful community structures in cases where each node can potentially belong to more than one community.Comment: Fix table

    Topological Feature Based Classification

    Full text link
    There has been a lot of interest in developing algorithms to extract clusters or communities from networks. This work proposes a method, based on blockmodelling, for leveraging communities and other topological features for use in a predictive classification task. Motivated by the issues faced by the field of community detection and inspired by recent advances in Bayesian topic modelling, the presented model automatically discovers topological features relevant to a given classification task. In this way, rather than attempting to identify some universal best set of clusters for an undefined goal, the aim is to find the best set of clusters for a particular purpose. Using this method, topological features can be validated and assessed within a given context by their predictive performance. The proposed model differs from other relational and semi-supervised learning models as it identifies topological features to explain the classification decision. In a demonstration on a number of real networks the predictive capability of the topological features are shown to rival the performance of content based relational learners. Additionally, the model is shown to outperform graph-based semi-supervised methods on directed and approximately bipartite networks.Comment: Awarded 3rd Best Student Paper at 14th International Conference on Information Fusion 201
    corecore