39,014 research outputs found

    Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis

    Full text link
    Machine learning (ML) algorithms have made a tremendous impact in the field of medical imaging. While medical imaging datasets have been growing in size, a challenge for supervised ML algorithms that is frequently mentioned is the lack of annotated data. As a result, various methods which can learn with less/other types of supervision, have been proposed. We review semi-supervised, multiple instance, and transfer learning in medical imaging, both in diagnosis/detection or segmentation tasks. We also discuss connections between these learning scenarios, and opportunities for future research.Comment: Submitted to Medical Image Analysi

    Hand Pose Estimation through Semi-Supervised and Weakly-Supervised Learning

    Full text link
    We propose a method for hand pose estimation based on a deep regressor trained on two different kinds of input. Raw depth data is fused with an intermediate representation in the form of a segmentation of the hand into parts. This intermediate representation contains important topological information and provides useful cues for reasoning about joint locations. The mapping from raw depth to segmentation maps is learned in a semi/weakly-supervised way from two different datasets: (i) a synthetic dataset created through a rendering pipeline including densely labeled ground truth (pixelwise segmentations); and (ii) a dataset with real images for which ground truth joint positions are available, but not dense segmentations. Loss for training on real images is generated from a patch-wise restoration process, which aligns tentative segmentation maps with a large dictionary of synthetic poses. The underlying premise is that the domain shift between synthetic and real data is smaller in the intermediate representation, where labels carry geometric and topological meaning, than in the raw input domain. Experiments on the NYU dataset show that the proposed training method decreases error on joints over direct regression of joints from depth data by 15.7%.Comment: 13 pages, 10 figures, 4 table

    Unsupervised High-level Feature Learning by Ensemble Projection for Semi-supervised Image Classification and Image Clustering

    Full text link
    This paper investigates the problem of image classification with limited or no annotations, but abundant unlabeled data. The setting exists in many tasks such as semi-supervised image classification, image clustering, and image retrieval. Unlike previous methods, which develop or learn sophisticated regularizers for classifiers, our method learns a new image representation by exploiting the distribution patterns of all available data for the task at hand. Particularly, a rich set of visual prototypes are sampled from all available data, and are taken as surrogate classes to train discriminative classifiers; images are projected via the classifiers; the projected values, similarities to the prototypes, are stacked to build the new feature vector. The training set is noisy. Hence, in the spirit of ensemble learning we create a set of such training sets which are all diverse, leading to diverse classifiers. The method is dubbed Ensemble Projection (EP). EP captures not only the characteristics of individual images, but also the relationships among images. It is conceptually simple and computationally efficient, yet effective and flexible. Experiments on eight standard datasets show that: (1) EP outperforms previous methods for semi-supervised image classification; (2) EP produces promising results for self-taught image classification, where unlabeled samples are a random collection of images rather than being from the same distribution as the labeled ones; and (3) EP improves over the original features for image clustering. The code of the method is available on the project page.Comment: 22 pages, 8 figure

    Semi-supervised Spectral Clustering for Classification

    Full text link
    We propose a Classification Via Clustering (CVC) algorithm which enables existing clustering methods to be efficiently employed in classification problems. In CVC, training and test data are co-clustered and class-cluster distributions are used to find the label of the test data. To determine an efficient number of clusters, a Semi-supervised Hierarchical Clustering (SHC) algorithm is proposed. Clusters are obtained by hierarchically applying two-way NCut by using signs of the Fiedler vector of the normalized graph Laplacian. To this end, a Direct Fiedler Vector Computation algorithm is proposed. The graph cut is based on the data structure and does not consider labels. Labels are used only to define the stopping criterion for graph cut. We propose clustering to be performed on the Grassmannian manifolds facilitating the formation of spectral ensembles. The proposed algorithm outperformed state-of-the-art image-set classification algorithms on five standard datasets

    Smooth Sparse Coding via Marginal Regression for Learning Sparse Representations

    Full text link
    We propose and analyze a novel framework for learning sparse representations, based on two statistical techniques: kernel smoothing and marginal regression. The proposed approach provides a flexible framework for incorporating feature similarity or temporal information present in data sets, via non-parametric kernel smoothing. We provide generalization bounds for dictionary learning using smooth sparse coding and show how the sample complexity depends on the L1 norm of kernel function used. Furthermore, we propose using marginal regression for obtaining sparse codes, which significantly improves the speed and allows one to scale to large dictionary sizes easily. We demonstrate the advantages of the proposed approach, both in terms of accuracy and speed by extensive experimentation on several real data sets. In addition, we demonstrate how the proposed approach could be used for improving semi-supervised sparse coding

    Manifold regularization with GANs for semi-supervised learning

    Full text link
    Generative Adversarial Networks are powerful generative models that are able to model the manifold of natural images. We leverage this property to perform manifold regularization by approximating a variant of the Laplacian norm using a Monte Carlo approximation that is easily computed with the GAN. When incorporated into the semi-supervised feature-matching GAN we achieve state-of-the-art results for GAN-based semi-supervised learning on CIFAR-10 and SVHN benchmarks, with a method that is significantly easier to implement than competing methods. We also find that manifold regularization improves the quality of generated images, and is affected by the quality of the GAN used to approximate the regularizer

    Semi-supervised structured output prediction by local linear regression and sub-gradient descent

    Full text link
    We propose a novel semi-supervised structured output prediction method based on local linear regression in this paper. The existing semi-supervise structured output prediction methods learn a global predictor for all the data points in a data set, which ignores the differences of local distributions of the data set, and the effects to the structured output prediction. To solve this problem, we propose to learn the missing structured outputs and local predictors for neighborhoods of different data points jointly. Using the local linear regression strategy, in the neighborhood of each data point, we propose to learn a local linear predictor by minimizing both the complexity of the predictor and the upper bound of the structured prediction loss. The minimization problem is solved by sub-gradient descent algorithms. We conduct experiments over two benchmark data sets, and the results show the advantages of the proposed method.Comment: arXiv admin note: substantial text overlap with arXiv:1604.0301

    Semi-Supervised Multitask Learning on Multispectral Satellite Images Using Wasserstein Generative Adversarial Networks (GANs) for Predicting Poverty

    Full text link
    Obtaining reliable data describing local poverty metrics at a granularity that is informative to policy-makers requires expensive and logistically difficult surveys, particularly in the developing world. Not surprisingly, the poverty stricken regions are also the ones which have a high probability of being a war zone, have poor infrastructure and sometimes have governments that do not cooperate with internationally funded development efforts. We train a CNN on free and publicly available daytime satellite images of the African continent from Landsat 7 to build a model for predicting local economic livelihoods. Only 5% of the satellite images can be associated with labels (which are obtained from DHS Surveys) and thus a semi-supervised approach using a GAN (similar to the approach of Salimans, et al. (2016)), albeit with a more stable-to-train flavor of GANs called the Wasserstein GAN regularized with gradient penalty(Gulrajani, et al. (2017)) is used. The method of multitask learning is employed to regularize the network and also create an end-to-end model for the prediction of multiple poverty metrics.Comment: This project was recognized as the best two-person project during the Spring 2017 offering of CS 231N Convolutional Neural Networks for Visual Recognition. Second revised version corrects typographical errors and adds a few additional reference

    Trace Quotient with Sparsity Priors for Learning Low Dimensional Image Representations

    Full text link
    This work studies the problem of learning appropriate low dimensional image representations. We propose a generic algorithmic framework, which leverages two classic representation learning paradigms, i.e., sparse representation and the trace quotient criterion. The former is a well-known powerful tool to identify underlying self-explanatory factors of data, while the latter is known for disentangling underlying low dimensional discriminative factors in data. Our developed solutions disentangle sparse representations of images by employing the trace quotient criterion. We construct a unified cost function, coined as the SPARse LOW dimensional representation (SparLow) function, for jointly learning both a sparsifying dictionary and a dimensionality reduction transformation. The SparLow function is widely applicable for developing various algorithms in three classic machine learning scenarios, namely, unsupervised, supervised, and semi-supervised learning. In order to develop efficient joint learning algorithms for maximizing the SparLow function, we deploy a framework of sparse coding with appropriate convex priors to ensure the sparse representations to be locally differentiable. Moreover, we develop an efficient geometric conjugate gradient algorithm to maximize the SparLow function on its underlying Riemannian manifold. Performance of the proposed SparLow algorithmic framework is investigated on several image processing tasks, such as 3D data visualization, face/digit recognition, and object/scene categorization.Comment: 17 page

    Machine learning of neuroimaging to diagnose cognitive impairment and dementia: a systematic review and comparative analysis

    Full text link
    INTRODUCTION: Advanced machine learning methods might help to identify dementia risk from neuroimaging, but their accuracy to date is unclear. METHODS: We systematically reviewed the literature, 2006 to late 2016, for machine learning studies differentiating healthy ageing through to dementia of various types, assessing study quality, and comparing accuracy at different disease boundaries. RESULTS: Of 111 relevant studies, most assessed Alzheimer's disease (AD) vs healthy controls, used ADNI data, support vector machines and only T1-weighted sequences. Accuracy was highest for differentiating AD from healthy controls, and poor for differentiating healthy controls vs MCI vs AD, or MCI converters vs non-converters. Accuracy increased using combined data types, but not by data source, sample size or machine learning method. DISCUSSION: Machine learning does not differentiate clinically-relevant disease categories yet. More diverse datasets, combinations of different types of data, and close clinical integration of machine learning would help to advance the field
    corecore