291 research outputs found

    Learning Localized Representations of Point Clouds with Graph-Convolutional Generative Adversarial Networks

    Get PDF
    Point clouds are an important type of geometric data generated by 3D acquisition devices, and have widespread use in computer graphics and vision. However, learning representations for point clouds is particularly challenging due to their nature as being an unordered collection of points irregularly distributed in 3D space. Recently, supervised and semisupervised problems for point clouds leveraged graph convolution, a generalization of the convolution operation for data defined over graphs. This operation has been shown to be very successful at extracting localized features from point clouds. In this paper, we study the unsupervised problem of a generative model exploiting graph convolution. Employing graph convolution operations in generative models is not straightforward and it poses some unique challenges. In particular, we focus on the generator of a GAN, where the graph is not known in advance as it is the very output of the generator. We show that the proposed architecture can learn to generate the graph and the features simultaneously. We also study the problem of defining an upsampling layer in the graph-convolutional generator, proposing two methods that respectively learn to exploit a multi-resolution or self-similarity prior to sample the data distribution

    Deep Image Translation With an Affinity-Based Change Prior for Unsupervised Multimodal Change Detection

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Image translation with convolutional neural networks has recently been used as an approach to multimodal change detection. Existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. A main challenge in the unsupervised problem setting is to avoid that change pixels affect the learning of the translation function. We propose two new network architectures trained with loss functions weighted by priors that reduce the impact of change pixels on the learning objective. The change prior is derived in an unsupervised fashion from relational pixel information captured by domain-specific affinity matrices. Specifically, we use the vertex degrees associated with an absolute affinity difference matrix and demonstrate their utility in combination with cycle consistency and adversarial training. The proposed neural networks are compared with the state-of-the-art algorithms. Experiments conducted on three real data sets show the effectiveness of our methodology

    Multiresolution Feature Guidance Based Transformer for Anomaly Detection

    Full text link
    Anomaly detection is represented as an unsupervised learning to identify deviated images from normal images. In general, there are two main challenges of anomaly detection tasks, i.e., the class imbalance and the unexpectedness of anomalies. In this paper, we propose a multiresolution feature guidance method based on Transformer named GTrans for unsupervised anomaly detection and localization. In GTrans, an Anomaly Guided Network (AGN) pre-trained on ImageNet is developed to provide surrogate labels for features and tokens. Under the tacit knowledge guidance of the AGN, the anomaly detection network named Trans utilizes Transformer to effectively establish a relationship between features with multiresolution, enhancing the ability of the Trans in fitting the normal data manifold. Due to the strong generalization ability of AGN, GTrans locates anomalies by comparing the differences in spatial distance and direction of multi-scale features extracted from the AGN and the Trans. Our experiments demonstrate that the proposed GTrans achieves state-of-the-art performance in both detection and localization on the MVTec AD dataset. GTrans achieves image-level and pixel-level anomaly detection AUROC scores of 99.0% and 97.9% on the MVTec AD dataset, respectively

    Unsupervised 3D Learning for Shape Analysis via Multiresolution Instance Discrimination

    Full text link
    Although unsupervised feature learning has demonstrated its advantages to reducing the workload of data labeling and network design in many fields, existing unsupervised 3D learning methods still cannot offer a generic network for various shape analysis tasks with competitive performance to supervised methods. In this paper, we propose an unsupervised method for learning a generic and efficient shape encoding network for different shape analysis tasks. The key idea of our method is to jointly encode and learn shape and point features from unlabeled 3D point clouds. For this purpose, we adapt HR-Net to octree-based convolutional neural networks for jointly encoding shape and point features with fused multiresolution subnetworks and design a simple-yet-efficient Multiresolution Instance Discrimination (MID) loss for jointly learning the shape and point features. Our network takes a 3D point cloud as input and output both shape and point features. After training, the network is concatenated with simple task-specific back-end layers and fine-tuned for different shape analysis tasks. We evaluate the efficacy and generality of our method and validate our network and loss design with a set of shape analysis tasks, including shape classification, semantic shape segmentation, as well as shape registration tasks. With simple back-ends, our network demonstrates the best performance among all unsupervised methods and achieves competitive performance to supervised methods, especially in tasks with a small labeled dataset. For fine-grained shape segmentation, our method even surpasses existing supervised methods by a large margin.Comment: Accepted by AAAI 2021. Code: https://github.com/microsoft/O-CNN/blob/master/docs/unsupervised.m
    • …
    corecore