64 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Multi-Antenna Techniques for Next Generation Cellular Communications

    Get PDF
    Future cellular communications are expected to offer substantial improvements for the pre- existing mobile services with higher data rates and lower latency as well as pioneer new types of applications that must comply with strict demands from a wider range of user types. All of these tasks require utmost efficiency in the use of spectral resources. Deploying multiple antennas introduces an additional signal dimension to wireless data transmissions, which provides a significant alternative solution against the plateauing capacity issue of the limited available spectrum. Multi-antenna techniques and the associated key enabling technologies possess unquestionable potential to play a key role in the evolution of next generation cellular systems. Spectral efficiency can be improved on downlink by concurrently serving multiple users with high-rate data connections on shared resources. In this thesis optimized multi-user multi-input multi-output (MIMO) transmissions are investigated on downlink from both filter design and resource allocation/assignment points of view. Regarding filter design, a joint baseband processing method is proposed specifically for high signal-to-noise ratio (SNR) conditions, where the necessary signaling overhead can be compensated for. Regarding resource scheduling, greedy- and genetic-based algorithms are proposed that demand lower complexity with large number of resource blocks relative to prior implementations. Channel estimation techniques are investigated for massive MIMO technology. In case of channel reciprocity, this thesis proposes an overhead reduction scheme for the signaling of user channel state information (CSI) feedback during a relative antenna calibration. In addition, a multi-cell coordination method is proposed for subspace-based blind estimators on uplink, which can be implicitly translated to downlink CSI in the presence of ideal reciprocity. Regarding non-reciprocal channels, a novel estimation technique is proposed based on reconstructing full downlink CSI from a select number of dominant propagation paths. The proposed method offers drastic compressions in user feedback reports and requires much simpler downlink training processes. Full-duplex technology can provide up to twice the spectral efficiency of conventional resource divisions. This thesis considers a full-duplex two-hop link with a MIMO relay and investigates mitigation techniques against the inherent loop-interference. Spatial-domain suppression schemes are developed for the optimization of full-duplex MIMO relaying in a coverage extension scenario on downlink. The proposed methods are demonstrated to generate data rates that closely approximate their global bounds

    A Critical Review of Physical Layer Security in Wireless Networking

    Get PDF
    Wireless networking has kept evolving with additional features and increasing capacity. Meanwhile, inherent characteristics of wireless networking make it more vulnerable than wired networks. In this thesis we present an extensive and comprehensive review of physical layer security in wireless networking. Different from cryptography, physical layer security, emerging from the information theoretic assessment of secrecy, could leverage the properties of wireless channel for security purpose, by either enabling secret communication without the need of keys, or facilitating the key agreement process. Hence we categorize existing literature into two main branches, namely keyless security and key-based security. We elaborate the evolution of this area from the early theoretic works on the wiretap channel, to its generalizations to more complicated scenarios including multiple-user, multiple-access and multiple-antenna systems, and introduce not only theoretical results but practical implementations. We critically and systematically examine the existing knowledge by analyzing the fundamental mechanics for each approach. Hence we are able to highlight advantages and limitations of proposed techniques, as well their interrelations, and bring insights into future developments of this area

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Étude du relais full-duplex dans les environnements intérieurs

    Get PDF
    Élargir la couverture des services du réseau aux endroits difficiles et aux régions éloignées est un besoin de plus en plus nécessaire de nos vies quotidiennes actuelles et futures. L'augmentation de la population et la demande accrue de services et de solutions de communication requièrent l'augmentation de la capacité des moyens de communication tout en permettant une couverture plus efficiente et plus étendue des territoires et régions faiblement peuplées dans le Canada et dans monde. Des études récentes ont confirmé que des interférences comme les interférences dans le même canal (ICC) et les interférences mutuelles (SI) ont un impact énorme sur les systèmes de communication sans fil et peuvent entraîner une dégradation significative des performances. Les techniques de relayage, dans lesquelles une source émettrice communique avec un récepteur destinataire l'aide d'un noeud intermédiaire, ont été introduites comme des solutions pour répondre au besoin croissant de débits plus élevés et de couverture étendu pour les communications sans fil. En tant que tel, il est essentiel de concevoir des systèmes de relais capables non seulement d'offrir une grande efficacité spectrale du signal radio, mais aussi de bénéficier pleinement des facilités de la diversité antennaire. Pour répondre à cet objectif, ce mémoire présente une étude sur une technique originale de réduction et d'annulation des interférences induite par un relayage quasi instantané sur un même signal radio en utilisant les antennes multiples du relais. Transmettre et recevoir simultanément le même signal radio au niveau du relais, créent une auto-interférence en raison des signaux de bouclage. Le défi principal de la mise en oeuvre du relais est d'atténuer et d'annuler la destruction ou la perte de l'information relayée. L'originalité de du travail réside dans la proposition d'un algorithme efficace utilisant une double projection 1 'une à 1' entrée du relais et une autre à la sortie du relais. Les résultats obtenus démontrent une réduction significative des interférences comparativement à d'autres travaux

    Efficient channel estimation algorithms for cooperative multiple-input multiple-output (MIMO) wireless communication networks

    Get PDF
    Multiple-input multiple-output (MIMO) relay communication systems have been identified to be one of the promising solutions to high rate wireless communications. In optimizing the MIMO relay networks, the knowledge of channel state information (CSI) is essential. This thesis develops novel channel estimation algorithms for MIMO relay communication networks, considering the amplify-and-forward relaying scheme. The proposed algorithms outperform existing schemes in estimating the CSI of each hop in MIMO relay networks
    corecore