55,794 research outputs found

    Weakly-Supervised Alignment of Video With Text

    Get PDF
    Suppose that we are given a set of videos, along with natural language descriptions in the form of multiple sentences (e.g., manual annotations, movie scripts, sport summaries etc.), and that these sentences appear in the same temporal order as their visual counterparts. We propose in this paper a method for aligning the two modalities, i.e., automatically providing a time stamp for every sentence. Given vectorial features for both video and text, we propose to cast this task as a temporal assignment problem, with an implicit linear mapping between the two feature modalities. We formulate this problem as an integer quadratic program, and solve its continuous convex relaxation using an efficient conditional gradient algorithm. Several rounding procedures are proposed to construct the final integer solution. After demonstrating significant improvements over the state of the art on the related task of aligning video with symbolic labels [7], we evaluate our method on a challenging dataset of videos with associated textual descriptions [36], using both bag-of-words and continuous representations for text.Comment: ICCV 2015 - IEEE International Conference on Computer Vision, Dec 2015, Santiago, Chil

    The DICEMAN description schemes for still images and video sequences

    Get PDF
    To address the problem of visual content description, two Description Schemes (DSs) developed within the context of a European ACTS project known as DICEMAN, are presented. The DSs, designed based on an analogy with well-known tools for document description, describe both the structure and semantics of still images and video sequences. The overall structure of both DSs including the various sub-DSs and descriptors (Ds) of which they are composed is described. In each case, the hierarchical sub-DS for describing structure can be constructed using automatic (or semi-automatic) image/video analysis tools. The hierarchical sub-DSs for describing the semantics, however, are constructed by a user. The integration of the two DSs into a video indexing application currently under development in DICEMAN is also briefly described.Peer ReviewedPostprint (published version

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Connectionist Temporal Modeling for Weakly Supervised Action Labeling

    Full text link
    We propose a weakly-supervised framework for action labeling in video, where only the order of occurring actions is required during training time. The key challenge is that the per-frame alignments between the input (video) and label (action) sequences are unknown during training. We address this by introducing the Extended Connectionist Temporal Classification (ECTC) framework to efficiently evaluate all possible alignments via dynamic programming and explicitly enforce their consistency with frame-to-frame visual similarities. This protects the model from distractions of visually inconsistent or degenerated alignments without the need of temporal supervision. We further extend our framework to the semi-supervised case when a few frames are sparsely annotated in a video. With less than 1% of labeled frames per video, our method is able to outperform existing semi-supervised approaches and achieve comparable performance to that of fully supervised approaches.Comment: To appear in ECCV 201
    corecore