2,206 research outputs found

    Combining Multiple Algorithms for Road Network Tracking from Multiple Source Remotely Sensed Imagery: a Practical System and Performance Evaluation

    Get PDF
    In light of the increasing availability of commercial high-resolution imaging sensors, automatic interpretation tools are needed to extract road features. Currently, many approaches for road extraction are available, but it is acknowledged that there is no single method that would be successful in extracting all types of roads from any remotely sensed imagery. In this paper, a novel classification of roads is proposed, based on both the roads' geometrical, radiometric properties and the characteristics of the sensors. Subsequently, a general road tracking framework is proposed, and one or more suitable road trackers are designed or combined for each type of roads. Extensive experiments are performed to extract roads from aerial/satellite imagery, and the results show that a combination strategy can automatically extract more than 60% of the total roads from very high resolution imagery such as QuickBird and DMC images, with a time-saving of approximately 20%, and acceptable spatial accuracy. It is proven that a combination of multiple algorithms is more reliable, more efficient and more robust for extracting road networks from multiple-source remotely sensed imagery than the individual algorithms

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Fault-Tolerant Vision for Vehicle Guidance in Agriculture

    Get PDF

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Semi-automatic Road Extraction from Very High Resolution Remote Sensing Imagery by RoadModeler

    Get PDF
    Accurate and up-to-date road information is essential for both effective urban planning and disaster management. Today, very high resolution (VHR) imagery acquired by airborne and spaceborne imaging sensors is the primary source for the acquisition of spatial information of increasingly growing road networks. Given the increased availability of the aerial and satellite images, it is necessary to develop computer-aided techniques to improve the efficiency and reduce the cost of road extraction tasks. Therefore, automation of image-based road extraction is a very active research topic. This thesis deals with the development and implementation aspects of a semi-automatic road extraction strategy, which includes two key approaches: multidirectional and single-direction road extraction. It requires a human operator to initialize a seed circle on a road and specify a extraction approach before the road is extracted by automatic algorithms using multiple vision cues. The multidirectional approach is used to detect roads with different materials, widths, intersection shapes, and degrees of noise, but sometimes it also interprets parking lots as road areas. Different from the multidirectional approach, the single-direction approach can detect roads with few mistakes, but each seed circle can only be used to detect one road. In accordance with this strategy, a RoadModeler prototype was developed. Both aerial and GeoEye-1 satellite images of seven different types of scenes with various road shapes in rural, downtown, and residential areas were used to evaluate the performance of the RoadModeler. The experimental results demonstrated that the RoadModeler is reliable and easy-to-use by a non-expert operator. Therefore, the RoadModeler is much better than the object-oriented classification. Its average road completeness, correctness, and quality achieved 94%, 97%, and 94%, respectively. These results are higher than those of Hu et al. (2007), which are 91%, 90%, and 85%, respectively. The successful development of the RoadModeler suggests that the integration of multiple vision cues potentially offers a solution to simple and fast acquisition of road information. Recommendations are given for further research to be conducted to ensure that this progress goes beyond the prototype stage and towards everyday use

    Automatic road network extraction in suburban areas from aerial images

    Get PDF
    [no abstract

    Automatic road network extraction from high resolution satellite imagery using spectral classification methods

    Get PDF
    Road networks play an important role in a number of geospatial applications, such as cartographic, infrastructure planning and traffic routing software. Automatic and semi-automatic road network extraction techniques have significantly increased the extraction rate of road networks. Automated processes still yield some erroneous and incomplete results and costly human intervention is still required to evaluate results and correct errors. With the aim of improving the accuracy of road extraction systems, three objectives are defined in this thesis: Firstly, the study seeks to develop a flexible semi-automated road extraction system, capable of extracting roads from QuickBird satellite imagery. The second objective is to integrate a variety of algorithms within the road network extraction system. The benefits of using each of these algorithms within the proposed road extraction system, is illustrated. Finally, a fully automated system is proposed by incorporating a number of the algorithms investigated throughout the thesis. CopyrightDissertation (MSc)--University of Pretoria, 2010.Computer Scienceunrestricte
    • …
    corecore