7,193 research outputs found

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Single View Modeling and View Synthesis

    Get PDF
    This thesis develops new algorithms to produce 3D content from a single camera. Today, amateurs can use hand-held camcorders to capture and display the 3D world in 2D, using mature technologies. However, there is always a strong desire to record and re-explore the 3D world in 3D. To achieve this goal, current approaches usually make use of a camera array, which suffers from tedious setup and calibration processes, as well as lack of portability, limiting its application to lab experiments. In this thesis, I try to produce the 3D contents using a single camera, making it as simple as shooting pictures. It requires a new front end capturing device rather than a regular camcorder, as well as more sophisticated algorithms. First, in order to capture the highly detailed object surfaces, I designed and developed a depth camera based on a novel technique called light fall-off stereo (LFS). The LFS depth camera outputs color+depth image sequences and achieves 30 fps, which is necessary for capturing dynamic scenes. Based on the output color+depth images, I developed a new approach that builds 3D models of dynamic and deformable objects. While the camera can only capture part of a whole object at any instance, partial surfaces are assembled together to form a complete 3D model by a novel warping algorithm. Inspired by the success of single view 3D modeling, I extended my exploration into 2D-3D video conversion that does not utilize a depth camera. I developed a semi-automatic system that converts monocular videos into stereoscopic videos, via view synthesis. It combines motion analysis with user interaction, aiming to transfer as much depth inferring work from the user to the computer. I developed two new methods that analyze the optical flow in order to provide additional qualitative depth constraints. The automatically extracted depth information is presented in the user interface to assist with user labeling work. In this thesis, I developed new algorithms to produce 3D contents from a single camera. Depending on the input data, my algorithm can build high fidelity 3D models for dynamic and deformable objects if depth maps are provided. Otherwise, it can turn the video clips into stereoscopic video

    EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras

    Full text link
    We present the first event-based learning approach for motion segmentation in indoor scenes and the first event-based dataset - EV-IMO - which includes accurate pixel-wise motion masks, egomotion and ground truth depth. Our approach is based on an efficient implementation of the SfM learning pipeline using a low parameter neural network architecture on event data. In addition to camera egomotion and a dense depth map, the network estimates pixel-wise independently moving object segmentation and computes per-object 3D translational velocities for moving objects. We also train a shallow network with just 40k parameters, which is able to compute depth and egomotion. Our EV-IMO dataset features 32 minutes of indoor recording with up to 3 fast moving objects simultaneously in the camera field of view. The objects and the camera are tracked by the VICON motion capture system. By 3D scanning the room and the objects, accurate depth map ground truth and pixel-wise object masks are obtained, which are reliable even in poor lighting conditions and during fast motion. We then train and evaluate our learning pipeline on EV-IMO and demonstrate that our approach far surpasses its rivals and is well suited for scene constrained robotics applications.Comment: 8 pages, 6 figures. Submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    An Appearance-Based Tracking Algorithm for Aerial Search and Rescue Purposes

    Get PDF
    The automation of the Wilderness Search and Rescue (WiSAR) task aims for high levels of understanding of various scenery. In addition, working in unfriendly and complex environments may cause a time delay in the operation and consequently put human lives at stake. In order to address this problem, Unmanned Aerial Vehicles (UAVs), which provide potential support to the conventional methods, are used. These vehicles are provided with reliable human detection and tracking algorithms; in order to be able to find and track the bodies of the victims in complex environments, and a robust control system to maintain safe distances from the detected bodies. In this paper, a human detection based on the color and depth data captured from onboard sensors is proposed. Moreover, the proposal of computing data association from the skeleton pose and a visual appearance measurement allows the tracking of multiple people with invariance to the scale, translation and rotation of the point of view with respect to the target objects. The system has been validated with real and simulation experiments, and the obtained results show the ability to track multiple individuals even after long-term disappearances. Furthermore, the simulations present the robustness of the implemented reactive control system as a promising tool for assisting the pilot to perform approaching maneuvers in a safe and smooth manner.This research is supported by Madrid Community project SEGVAUTO 4.0 P2018/EMT-4362) and by the Spanish Government CICYT projects (TRA2015-63708-R and TRA2016-78886-C3-1-R), and Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario (FPU14/02143). Also, we gratefully acknowledge the support of the NVIDIA Corporation with the donation of the GPUs used for this research

    Depth-Assisted Semantic Segmentation, Image Enhancement and Parametric Modeling

    Get PDF
    This dissertation addresses the problem of employing 3D depth information on solving a number of traditional challenging computer vision/graphics problems. Humans have the abilities of perceiving the depth information in 3D world, which enable humans to reconstruct layouts, recognize objects and understand the geometric space and semantic meanings of the visual world. Therefore it is significant to explore how the 3D depth information can be utilized by computer vision systems to mimic such abilities of humans. This dissertation aims at employing 3D depth information to solve vision/graphics problems in the following aspects: scene understanding, image enhancements and 3D reconstruction and modeling. In addressing scene understanding problem, we present a framework for semantic segmentation and object recognition on urban video sequence only using dense depth maps recovered from the video. Five view-independent 3D features that vary with object class are extracted from dense depth maps and used for segmenting and recognizing different object classes in street scene images. We demonstrate a scene parsing algorithm that uses only dense 3D depth information to outperform using sparse 3D or 2D appearance features. In addressing image enhancement problem, we present a framework to overcome the imperfections of personal photographs of tourist sites using the rich information provided by large-scale internet photo collections (IPCs). By augmenting personal 2D images with 3D information reconstructed from IPCs, we address a number of traditionally challenging image enhancement techniques and achieve high-quality results using simple and robust algorithms. In addressing 3D reconstruction and modeling problem, we focus on parametric modeling of flower petals, the most distinctive part of a plant. The complex structure, severe occlusions and wide variations make the reconstruction of their 3D models a challenging task. We overcome these challenges by combining data driven modeling techniques with domain knowledge from botany. Taking a 3D point cloud of an input flower scanned from a single view, each segmented petal is fitted with a scale-invariant morphable petal shape model, which is constructed from individually scanned 3D exemplar petals. Novel constraints based on botany studies are incorporated into the fitting process for realistically reconstructing occluded regions and maintaining correct 3D spatial relations. The main contribution of the dissertation is in the intelligent usage of 3D depth information on solving traditional challenging vision/graphics problems. By developing some advanced algorithms either automatically or with minimum user interaction, the goal of this dissertation is to demonstrate that computed 3D depth behind the multiple images contains rich information of the visual world and therefore can be intelligently utilized to recognize/ understand semantic meanings of scenes, efficiently enhance and augment single 2D images, and reconstruct high-quality 3D models
    • …
    corecore