10,768 research outputs found

    KYT2022 Finnish Research Programme on Nuclear Waste Management 2019–2022 : Final Report

    Get PDF
    KYT2022 (Finnish Research Programme on Nuclear Waste Management 2019–2022), organised by the Ministry of Economic Affairs and Employment, was a national research programme with the objective to ensure that the authorities have sufficient levels of nuclear expertise and preparedness that are needed for safety of nuclear waste management. The starting point for public research programs on nuclear safety is that they create the conditions for maintaining the knowledge required for the continued safe and economic use of nuclear energy, developing new know-how and participating in international collaboration. The content of the KYT2022 research programme was composed of nationally important research topics, which are the safety, feasibility and acceptability of nuclear waste management. KYT2022 research programme also functioned as a discussion and information-sharing forum for the authorities, those responsible for nuclear waste management and the research organizations, which helped to make use of the limited research resources. The programme aimed to develop national research infrastructure, ensure the continuing availability of expertise, produce high-level scientific research and increase general knowledge of nuclear waste management

    Multimodal spatio-temporal deep learning framework for 3D object detection in instrumented vehicles

    Get PDF
    This thesis presents the utilization of multiple modalities, such as image and lidar, to incorporate spatio-temporal information from sequence data into deep learning architectures for 3Dobject detection in instrumented vehicles. The race to autonomy in instrumented vehicles or self-driving cars has stimulated significant research in developing autonomous driver assistance systems (ADAS) technologies related explicitly to perception systems. Object detection plays a crucial role in perception systems by providing spatial information to its subsequent modules; hence, accurate detection is a significant task supporting autonomous driving. The advent of deep learning in computer vision applications and the availability of multiple sensing modalities such as 360° imaging, lidar, and radar have led to state-of-the-art 2D and 3Dobject detection architectures. Most current state-of-the-art 3D object detection frameworks consider single-frame reference. However, these methods do not utilize temporal information associated with the objects or scenes from the sequence data. Thus, the present research hypothesizes that multimodal temporal information can contribute to bridging the gap between 2D and 3D metric space by improving the accuracy of deep learning frameworks for 3D object estimations. The thesis presents understanding multimodal data representations and selecting hyper-parameters using public datasets such as KITTI and nuScenes with Frustum-ConvNet as a baseline architecture. Secondly, an attention mechanism was employed along with convolutional-LSTM to extract spatial-temporal information from sequence data to improve 3D estimations and to aid the architecture in focusing on salient lidar point cloud features. Finally, various fusion strategies are applied to fuse the modalities and temporal information into the architecture to assess its efficacy on performance and computational complexity. Overall, this thesis has established the importance and utility of multimodal systems for refined 3D object detection and proposed a complex pipeline incorporating spatial, temporal and attention mechanisms to improve specific, and general class accuracy demonstrated on key autonomous driving data sets

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Victims' Access to Justice in Trinidad and Tobago: An exploratory study of experiences and challenges of accessing criminal justice in a post-colonial society

    Get PDF
    This thesis investigates victims' access to justice in Trinidad and Tobago, using their own narratives. It seeks to capture how their experiences affected their identities as victims and citizens, alongside their perceptions of legitimacy regarding the criminal justice system. While there have been some reforms in the administration of criminal justice in Trinidad and Tobago, such reforms have not focused on victims' accessibility to the justice system. Using grounded theory methodology, qualitative data was collected through 31 in-depth interviews with victims and victim advocates. The analysis found that victims experienced interpersonal, structural, and systemic barriers at varying levels throughout the criminal justice system, which manifested as institutionalized secondary victimization, silencing and inequality. This thesis argues that such experiences not only served to appropriate conflict but demonstrates that access is often given in a very narrow sense. Furthermore, it shows a failure to encompass access to justice as appropriated conflicts are left to stagnate in the system as there is often very little resolution. Adopting a postcolonial lens to analyse victims' experiences, the analysis identified othering practices that served to institutionalize the vulnerability and powerlessness associated with victim identities. Here, it is argued that these othering practices also affected the rights consciousness of victims, delegitimating their identities as citizens. Moreover, as a result of their experiences, victims had mixed perceptions of the justice system. It is argued that while the system is a legitimate authority victims' endorsement of the system is questionable, therefore victims' experiences suggest that there is a reinforcement of the system's legal hegemony. The findings suggest that within the legal system of Trinidad and Tobago, legacies of colonialism shape the postcolonial present as the psychology and inequalities of the past are present in the interactions and processes of justice. These findings are relevant for policymakers in Trinidad and Tobago and other regions. From this study it is recognized that, to improve access to justice for victims, there needs to be a move towards victim empowerment that promotes resilience and enhances social capital. Going forward it is noted that there is a need for further research

    Information Flow Guided Synthesis

    Get PDF
    Compositional synthesis relies on the discovery of assumptions, i.e., restrictions on the behavior of the remainder of the system that allow a component to realize its specification. In order to avoid losing valid solutions, these assumptions should be necessary conditions for realizability. However, because there are typically many different behaviors that realize the same specification, necessary behavioral restrictions often do not exist. In this paper, we introduce a new class of assumptions for compositional synthesis, which we call information flow assumptions. Such assumptions capture an essential aspect of distributed computing, because components often need to act upon information that is available only in other components. The presence of a certain flow of information is therefore often a necessary requirement, while the actual behavior that establishes the information flow is unconstrained. In contrast to behavioral assumptions, which are properties of individual computation traces, information flow assumptions are hyperproperties, i.e., properties of sets of traces. We present a method for the automatic derivation of information-flow assumptions from a temporal logic specification of the system. We then provide a technique for the automatic synthesis of component implementations based on information flow assumptions. This provides a new compositional approach to the synthesis of distributed systems. We report on encouraging first experiments with the approach, carried out with the BoSyHyper synthesis tool

    Visual Servo Based Space Robotic Docking for Active Space Debris Removal

    Get PDF
    This thesis developed a 6DOF pose detection algorithm using machine learning capable of providing the orientation and location of an object in various lighting conditions and at different angles, for the purposes of space robotic rendezvous and docking control. The computer vision algorithm was paired with a virtual robotic simulation to test the feasibility of using the proposed algorithm for visual servo. This thesis also developed a method for generating virtual training images and corresponding ground truth data including both location and orientation information. Traditional computer vision techniques struggle to determine the 6DOF pose of an object when certain colors or edges are not found, therefore training a network is an optimal choice. The 6DOF pose detection algorithm was implemented on MATLAB and Python. The robotic simulation was implemented on Simulink and ROS Gazebo. Finally, the generation of training data was done with Python and Blender

    Sviluppo di un metodo innovativo per la misura del comfort termico attraverso il monitoraggio di parametri fisiologici e ambientali in ambienti indoor

    Get PDF
    openLa misura del comfort termico in ambienti indoor è un argomento di interesse per la comunità scientifica, poiché il comfort termico incide profondamente sul benessere degli utenti ed inoltre, per garantire condizioni di comfort ottimali, gli edifici devono affrontare costi energetici elevati. Anche se esistono norme nel campo dell'ergonomia del comfort che forniscono linee guida per la valutazione del comfort termico, può succedere che in contesti reali sia molto difficile ottenere una misurazione accurata. Pertanto, per migliorare la misura del comfort termico negli edifici, la ricerca si sta concentrando sulla valutazione dei parametri personali e fisiologici legati al comfort termico, per creare ambienti su misura per l’utente. Questa tesi presenta diversi contributi riguardo questo argomento. Infatti, in questo lavoro di ricerca, sono stati implementati una serie di studi per sviluppare e testare procedure di misurazione in grado di valutare quantitativamente il comfort termico umano, tramite parametri ambientali e fisiologici, per catturare le peculiarità che esistono tra i diversi utenti. In primo luogo, è stato condotto uno studio in una camera climatica controllata, con un set di sensori invasivi utilizzati per la misurazione dei parametri fisiologici. L'esito di questa ricerca è stato utile per ottenere una prima accuratezza nella misurazione del comfort termico dell'82%, ottenuta mediante algoritmi di machine learning (ML) che forniscono la sensazione termica (TSV) utilizzando la variabilità della frequenza cardiaca (HRV) , parametro che la letteratura ha spesso riportato legato sia al comfort termico dell'utenza che alle grandezze ambientali. Questa ricerca ha dato origine a uno studio successivo in cui la valutazione del comfort termico è stata effettuata utilizzando uno smartwatch minimamente invasivo per la raccolta dell’HRV. Questo secondo studio consisteva nel variare le condizioni ambientali di una stanza semi-controllata, mentre i partecipanti potevano svolgere attività di ufficio ma in modo limitato, ovvero evitando il più possibile i movimenti della mano su cui era indossato lo smartwatch. Con questa configurazione, è stato possibile stabilire che l'uso di algoritmi di intelligenza artificiale (AI) e il set di dati eterogeneo creato aggregando parametri ambientali e fisiologici, può fornire una misura di TSV con un errore medio assoluto (MAE) di 1.2 e un errore percentuale medio assoluto (MAPE) del 20%. Inoltre, tramite il Metodo Monte Carlo (MCM) è stato possibile calcolare l'impatto delle grandezze in ingresso sul calcolo del TSV. L'incertezza più alta è stata raggiunta a causa dell'incertezza nella misura della temperatura dell'aria (U = 14%) e dell'umidità relativa (U = 10,5%). L'ultimo contributo rilevante ottenuto con questa ricerca riguarda la misura del comfort termico in ambiente reale, semi controllato, in cui il partecipante non è stato costretto a limitare i propri movimenti. La temperatura della pelle è stata inclusa nel set-up sperimentale, per migliorare la misurazione del TSV. I risultati hanno mostrato che l'inclusione della temperatura della pelle per la creazione di modelli personalizzati, realizzati utilizzando i dati provenienti dal singolo partecipante, porta a risultati soddisfacenti (MAE = 0,001±0,0003 e MAPE = 0,02%±0,09%). L'approccio più generalizzato, invece, che consiste nell'addestrare gli algoritmi sull'intero gruppo di partecipanti tranne uno, e utilizzare quello tralasciato per il test, fornisce prestazioni leggermente inferiori (MAE = 1±0.2 e MAPE = 25% ±6%). Questo risultato evidenzia come in condizioni semi-controllate, la previsione di TSV utilizzando la temperatura della pelle e l'HRV possa essere eseguita con un certo grado di incertezza.Measuring human thermal comfort in indoor environments is a topic of interest in the scientific community, since thermal comfort deeply affects the well-being of occupants and furthermore, to guarantee optimal comfort conditions, buildings must face high energy costs. Even if there are standards in the field of the ergonomics of the thermal environment that provide guidelines for thermal comfort assessment, it can happen that in real-world settings it is very difficult to obtain an accurate measurement. Therefore, to improve the measurement of thermal comfort of occupants in buildings, research is focusing on the assessment of personal and physiological parameters related to thermal comfort, to create environments carefully tailored to the occupant that lives in it. This thesis presents several contributions to this topic. In fact, in the following research work, a set of studies were implemented to develop and test measurement procedures capable of quantitatively assessing human thermal comfort, by means of environmental and physiological parameters, to capture peculiarities among different occupants. Firstly, it was conducted a study in a controlled climatic chamber with an invasive set of sensors used for measuring physiological parameters. The outcome of this research was helpful to achieve a first accuracy in the measurement of thermal comfort of 82%, obtained by training machine learning (ML) algorithms that provide the thermal sensation vote (TSV) by means of environmental quantities and heart rate variability (HRV), a parameter that literature has often reported being related to both users' thermal comfort. This research gives rise to a subsequent study in which thermal comfort assessment was made by using a minimally invasive smartwatch for collecting HRV. This second study consisted in varying the environmental conditions of a semi-controlled test-room, while participants could carry out light-office activities but in a limited way, i.e. avoiding the movements of the hand on which the smartwatch was worn as much as possible. With this experimental setup, it was possible to establish that the use of artificial intelligence (AI) algorithms (such as random forest or convolutional neural networks) and the heterogeneous dataset created by aggregating environmental and physiological parameters, can provide a measure of TSV with a mean absolute error (MAE) of 1.2 and a mean absolute percentage error (MAPE) of 20%. In addition, by using of Monte Carlo Method (MCM), it was possible to compute the impact of the uncertainty of the input quantities on the computation of the TSV. The highest uncertainty was reached due to the air temperature uncertainty (U = 14%) and relative humidity (U = 10.5%). The last relevant contribution obtained with this research work concerns the measurement of thermal comfort in a real-life setting, semi-controlled environment, in which the participant was not forced to limit its movements. Skin temperature was included in the experimental set-up, to improve the measurement of TSV. The results showed that the inclusion of skin temperature for the creation of personalized models, made by using data coming from the single participant brings satisfactory results (MAE = 0.001±0.0003 and MAPE = 0.02%±0.09%). On the other hand, the more generalized approach, which consists in training the algorithms on the whole bunch of participants except one, and using the one left out for the test, provides slightly lower performances (MAE = 1±0.2 and MAPE = 25%±6%). This result highlights how in semi-controlled conditions, the prediction of TSV using skin temperature and HRV can be performed with acceptable accuracy.INGEGNERIA INDUSTRIALEembargoed_20220321Morresi, Nicol

    The Effect of Performance Management on Perceived Justice in Family Businesses in Hungary

    Get PDF
    My research connects to three main disciplines: Family Business Management, Organizational Behaviour Management, and Human Resource Management. Specifically, in my thesis proposal, I study the Performance Management System and its effects on perceived justice at family businesses. For identifying the research focus and questions and developing the research design, I apply the Interactive Model (Maxwell & Loomis, 2003), which has five main components: Purposes, Conceptual Framework, Research Questions, Methods, and Validity. In this interactive model, these five components form an integrated, interacting whole. The research questions play a central role. The components are closely tied to each other, and each element can influence and be influenced by the others, rather than being linked in a linear or cyclic sequence

    Biologically-inspired Neural Networks for Shape and Color Representation

    Get PDF
    The goal of human-level performance in artificial vision systems is yet to be achieved. With this goal, a reasonable choice is to simulate this biological system with computational models that mimic its visual processing. A complication with this approach is that the human brain, and similarly its visual system, are not fully understood. On the bright side, with remarkable findings in the field of visual neuroscience, many questions about visual processing in the primate brain have been answered in the past few decades. Nonetheless, a lag in incorporating these new discoveries into biologically-inspired systems is evident. The present work introduces novel biologically-inspired models that employ new findings of shape and color processing into analytically-defined neural networks. In contrast to most current methods that attempt to learn all aspects of behavior from data, here we propose to bootstrap such learning by building upon existing knowledge rather than learning from scratch. Put simply, the processing networks are defined analytically using current neural understanding and learned where such knowledge is not available. This is thus a hybrid strategy that hopefully combines the best of both worlds. Experiments on the artificial neurons in the proposed networks demonstrate that these neurons mimic the studied behavior of biological cells, suggesting a path forward for incorporating analytically-defined artificial neural networks into computer vision systems
    corecore