986 research outputs found

    Semi-algebraic colorings of complete graphs

    Get PDF
    We consider mm-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The case m=2m = 2 was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric objects and for other graphs arising in computational geometry. Considering larger values of mm is relevant, e.g., to problems concerning the number of distinct distances determined by a point set. For p≥3p\ge 3 and m≥2m\ge 2, the classical Ramsey number R(p;m)R(p;m) is the smallest positive integer nn such that any mm-coloring of the edges of KnK_n, the complete graph on nn vertices, contains a monochromatic KpK_p. It is a longstanding open problem that goes back to Schur (1916) to decide whether R(p;m)=2O(m)R(p;m)=2^{O(m)}, for a fixed pp. We prove that this is true if each color class is defined semi-algebraically with bounded complexity. The order of magnitude of this bound is tight. Our proof is based on the Cutting Lemma of Chazelle {\em et al.}, and on a Szemer\'edi-type regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erd\H{o}s and Shelah

    Moduli spaces of colored graphs

    Full text link
    We introduce moduli spaces of colored graphs, defined as spaces of non-degenerate metrics on certain families of edge-colored graphs. Apart from fixing the rank and number of legs these families are determined by various conditions on the coloring of their graphs. The motivation for this is to study Feynman integrals in quantum field theory using the combinatorial structure of these moduli spaces. Here a family of graphs is specified by the allowed Feynman diagrams in a particular quantum field theory such as (massive) scalar fields or quantum electrodynamics. The resulting spaces are cell complexes with a rich and interesting combinatorial structure. We treat some examples in detail and discuss their topological properties, connectivity and homology groups

    Inside-Out Polytopes

    Get PDF
    We present a common generalization of counting lattice points in rational polytopes and the enumeration of proper graph colorings, nowhere-zero flows on graphs, magic squares and graphs, antimagic squares and graphs, compositions of an integer whose parts are partially distinct, and generalized latin squares. Our method is to generalize Ehrhart's theory of lattice-point counting to a convex polytope dissected by a hyperplane arrangement. We particularly develop the applications to graph and signed-graph coloring, compositions of an integer, and antimagic labellings.Comment: 24 pages, 3 figures; to appear in Adv. Mat
    • …
    corecore