563 research outputs found

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing

    The java.util.concurrent synchronizer framework

    Get PDF
    AbstractMost synchronizers (locks, barriers, etc.) in the J2SE 5.0 java.util.concurrent package are constructed using a small framework based on class AbstractQueuedSynchronizer. This framework provides common mechanics for atomically managing synchronization state, blocking and unblocking threads, and queuing. The paper describes the rationale, design, implementation, usage, and performance of this framework

    Turning Futexes Inside-Out: Efficient and Deterministic User Space Synchronization Primitives for Real-Time Systems with IPCP

    Get PDF
    In Linux and other operating systems, futexes (fast user space mutexes) are the underlying synchronization primitives to implement POSIX synchronization mechanisms, such as blocking mutexes, condition variables, and semaphores. Futexes allow one to implement mutexes with excellent performance by avoiding system calls in the fast path. However, futexes are fundamentally limited to synchronization mechanisms that are expressible as atomic operations on 32-bit variables. At operating system kernel level, futex implementations require complex mechanisms to look up internal wait queues making them susceptible to determinism issues. In this paper, we present an alternative design for futexes by completely moving the complexity of wait queue management from the operating system kernel into user space, i. e. we turn futexes "inside out". The enabling mechanisms for "inside-out futexes" are an efficient implementation of the immediate priority ceiling protocol (IPCP) to achieve non-preemptive critical sections in user space, spinlocks for mutual exclusion, and interwoven services to suspend or wake up threads. The design allows us to implement common thread synchronization mechanisms in user space and to move determinism concerns out of the kernel while keeping the performance properties of futexes. The presented approach is suitable for multi-processor real-time systems with partitioned fixed-priority (P-FP) scheduling on each processor. We evaluate the approach with an implementation for mutexes and condition variables in a real-time operating system (RTOS). Experimental results on 32-bit ARM platforms show that the approach is feasible, and overheads are driven by low-level synchronization primitives

    Semantics of communicating parallel processes.

    Get PDF
    Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.Bibliography: leaves 187-189.Ph.D

    Real-time and fault tolerance in distributed control software

    Get PDF
    Closed loop control systems typically contain multitude of spatially distributed sensors and actuators operated simultaneously. So those systems are parallel and distributed in their essence. But mapping this parallelism onto the given distributed hardware architecture, brings in some additional requirements: safe multithreading, optimal process allocation, real-time scheduling of bus and network resources. Nowadays, fault tolerance methods and fast even online reconfiguration are becoming increasingly important. All those often conflicting requirements, make design and implementation of real-time distributed control systems an extremely difficult task, that requires substantial knowledge in several areas of control and computer science. Although many design methods have been proposed so far, none of them had succeeded to cover all important aspects of the problem at hand. [1] Continuous increase of production in embedded market, makes a simple and natural design methodology for real-time systems needed more then ever

    The moderate approach to integrating concurrency and object orientation

    Get PDF
    Principles of integrating concurrent computation, objects, and inheritance are discussed. The approach outlined here is guided by general considerations about the rôles of the two paradigms being merged. We suggest our approach to some open design questions: the relation of concurrency to inheritance and the thread and synchronisation concept among objects. The question, where should the combination of concurrency and objectorientation be settled between the paradigms, is analysed in different aspects. The presented approach also avoids the inheritance anomaly
    • …
    corecore