104 research outputs found

    IMAGINE Final Report

    No full text

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    A Real-Time Architecture for Conversational Agents

    Get PDF
    Consider two people having a face-to-face conversation. They sometimes listen, sometimes talk, and sometimes interrupt each other. They use facial expressions to signal that they are confused. They point at objects. They jump from topic to topic opportunistically. When another acquaintance walks by, they nod and say hello. All the while they have other concerns on their mind, such as not missing the meeting that starts in 10 minutes. Like many other humans behaviors, these are not easy to replicate in artificial agents. In this work we look into the design requirements of an embodied agent that can participate in such natural conversations in a mixed-initiative, multi-modal setting. Such an agent needs to understand participating in a conversation is not merely a matter of sending a message and then waiting to receive a response -- both partners are simultaneously active at all times. This agent should be able to deal with different, sometimes conflicting goals, and be always ready to address events that may interrupt the current topic of conversation. To address those requirements, we have created a modular architecture that includes distributed functional units that compete with each other to gain control over available resources. Each of these units, called a schema, has its own sense- think-act cycle. In the field of robotics, this design is often referred to as behavior-based or schema-based. The major contribution of this work is merging behavior-based robotics with plan- based human-computer interaction
    • …
    corecore