1,646 research outputs found

    Introducing linked open data in graph-based recommender systems

    Get PDF
    Thanks to the recent spread of the Linked Open Data (LOD) initiative, a huge amount of machine-readable knowledge encoded as RDF statements is today available in the so-called LOD cloud. Accordingly, a big effort is now spent to investigate to what extent such information can be exploited to develop new knowledge-based services or to improve the effectiveness of knowledge-intensive platforms as Recommender Systems (RS). To this end, in this article we study the impact of the exogenous knowledge coming from the LOD cloud on the overall performance of a graph-based recommendation framework. Specifically, we propose a methodology to automatically feed a graph-based RS with features gathered from the LOD cloud and we analyze the impact of several widespread feature selection techniques in such recommendation settings. The experimental evaluation, performed on three state-of-the-art datasets, provided several outcomes: first, information extracted from the LOD cloud can significantly improve the performance of a graph-based RS. Next, experiments showed a clear correlation between the choice of the feature selection technique and the ability of the algorithm to maximize specific evaluation metrics, as accuracy or diversity of the recommendations. Moreover, our graph-based algorithm fed with LOD-based features was able to overcome several baselines, as collaborative filtering and matrix factorization

    Content Recommendation Through Linked Data

    Get PDF
    Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201

    Ontology-Based Recommendation of Editorial Products

    Get PDF
    Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution

    Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation

    Get PDF
    In this paper, we present the results of an empirical evaluation investigating how recommendation algorithms are affected by popularity bias. Popularity bias makes more popular items to be recommended more frequently than less popular ones, thus it is one of the most relevant issues that limits the fairness of recommender systems. In particular, we define an experimental protocol based on two state-of-theart datasets containing users’ preferences on movies and books and three different recommendation paradigms, i.e., collaborative filtering, content-based filtering and graph-based algorithms. In order to evaluate the overall fairness of the recommendations we use well-known metrics such as Catalogue Coverage, Gini Index and Group Average Popularity (ΔGAP). The goal of this paper is: (i) to provide a clear picture of how recommendation techniques are affected by popularity bias; (ii) to trigger further research in the area aimed to introduce methods to mitigate or reduce biases in order to provide fairer recommendations

    An explainable recommender system based on semantically-aware matrix factorization.

    Get PDF
    Collaborative Filtering techniques provide the ability to handle big and sparse data to predict the ratings for unseen items with high accuracy. Matrix factorization is an accurate collaborative filtering method used to predict user preferences. However, it is a black box system that recommends items to users without being able to explain why. This is due to the type of information these systems use to build models. Although rich in information, user ratings do not adequately satisfy the need for explanation in certain domains. White box systems, in contrast, can, by nature, easily generate explanations. However, their predictions are less accurate than sophisticated black box models. Recent research has demonstrated that explanations are an essential component in bringing the powerful predictions of big data and machine learning methods to a mass audience without a compromise in trust. Explanations can take a variety of formats, depending on the recommendation domain and the machine learning model used to make predictions. Semantic Web (SW) technologies have been exploited increasingly in recommender systems in recent years. The SW consists of knowledge graphs (KGs) providing valuable information that can help improve the performance of recommender systems. Yet KGs, have not been used to explain recommendations in black box systems. In this dissertation, we exploit the power of the SW to build new explainable recommender systems. We use the SW\u27s rich expressive power of linked data, along with structured information search and understanding tools to explain predictions. More specifically, we take advantage of semantic data to learn a semantically aware latent space of users and items in the matrix factorization model-learning process to build richer, explainable recommendation models. Our off-line and on-line evaluation experiments show that our approach achieves accurate prediction with the additional ability to explain recommendations, in comparison to baseline approaches. By fostering explainability, we hope that our work contributes to more transparent, ethical machine learning without sacrificing accuracy
    corecore