4,817 research outputs found

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    A Process Framework for Semantics-aware Tourism Information Systems

    Get PDF
    The growing sophistication of user requirements in tourism due to the advent of new technologies such as the Semantic Web and mobile computing has imposed new possibilities for improved intelligence in Tourism Information Systems (TIS). Traditional software engineering and web engineering approaches cannot suffice, hence the need to find new product development approaches that would sufficiently enable the next generation of TIS. The next generation of TIS are expected among other things to: enable semantics-based information processing, exhibit natural language capabilities, facilitate inter-organization exchange of information in a seamless way, and evolve proactively in tandem with dynamic user requirements. In this paper, a product development approach called Product Line for Ontology-based Semantics-Aware Tourism Information Systems (PLOSATIS) which is a novel hybridization of software product line engineering, and Semantic Web engineering concepts is proposed. PLOSATIS is presented as potentially effective, predictable and amenable to software process improvement initiatives

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201

    Joint Topic-Semantic-aware Social Recommendation for Online Voting

    Full text link
    Online voting is an emerging feature in social networks, in which users can express their attitudes toward various issues and show their unique interest. Online voting imposes new challenges on recommendation, because the propagation of votings heavily depends on the structure of social networks as well as the content of votings. In this paper, we investigate how to utilize these two factors in a comprehensive manner when doing voting recommendation. First, due to the fact that existing text mining methods such as topic model and semantic model cannot well process the content of votings that is typically short and ambiguous, we propose a novel Topic-Enhanced Word Embedding (TEWE) method to learn word and document representation by jointly considering their topics and semantics. Then we propose our Joint Topic-Semantic-aware social Matrix Factorization (JTS-MF) model for voting recommendation. JTS-MF model calculates similarity among users and votings by combining their TEWE representation and structural information of social networks, and preserves this topic-semantic-social similarity during matrix factorization. To evaluate the performance of TEWE representation and JTS-MF model, we conduct extensive experiments on real online voting dataset. The results prove the efficacy of our approach against several state-of-the-art baselines.Comment: The 26th ACM International Conference on Information and Knowledge Management (CIKM 2017
    corecore