26,676 research outputs found

    Web Service Discovery in a Semantically Extended UDDI Registry: the Case of FUSION

    Get PDF
    Service-oriented computing is being adopted at an unprecedented rate, making the effectiveness of automated service discovery an increasingly important challenge. UDDI has emerged as a de facto industry standard and fundamental building block within SOA infrastructures. Nevertheless, conventional UDDI registries lack means to provide unambiguous, semantically rich representations of Web service capabilities, and the logic inference power required for facilitating automated service discovery. To overcome this important limitation, a number of approaches have been proposed towards augmenting Web service discovery with semantics. This paper discusses the benefits of semantically extending Web service descriptions and UDDI registries, and presents an overview of the approach put forward in project FUSION, towards semantically-enhanced publication and discovery of services based on SAWSDL

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    Combining SAWSDL, OWL-DL and UDDI for Semantically Enhanced Web Service Discovery

    Get PDF
    UDDI registries are included as a standard offering within the product suite of any major SOA vendor, serving as the foundation for establishing design-time and run-time SOA governance. Despite the success of the UDDI specification and its rapid uptake by the industry, the capabilities of its offered service discovery facilities are rather limited. The lack of machine-understandable semantics in the technical specifications and classification schemes used for retrieving services, prevent UDDI registries from supporting fully automated and thus truly effective service discovery. This paper presents the implementation of a semantically-enhanced registry that builds on the UDDI specification and augments its service publication and discovery facilities to overcome the aforementioned limitations. The proposed solution combines the use of SAWSDL for creating semantically annotated descriptions of service interfaces and the use of OWL-DL for modelling service capabilities and for performing matchmaking via DL reasoning

    Semantic web service automation with lightweight annotations

    Get PDF
    Web services, both RESTful and WSDL-based, are an increasingly important part of the Web. With the application of semantic technologies, we can achieve automation of the use of those services. In this paper, we present WSMO-Lite and MicroWSMO, two related lightweight approaches to semantic Web service description, evolved from the WSMO framework. WSMO-Lite uses SAWSDL to annotate WSDL-based services, whereas MicroWSMO uses the hRESTS microformat to annotate RESTful APIs and services. Both frameworks share an ontology for service semantics together with most of automation algorithms

    Web Service Discovery in the FUSION Semantic Registry

    Get PDF
    The UDDI specification was developed as an attempt to address the key challenge of effective Web service discovery and has become a widely adopted standard. However, the text-based indexing and search mechanism that UDDI registries offer does not suffice for expressing unambiguous and semantically rich representations of service capabilities, and cannot support the logic-based inference capacity required for facilitating automated service matchmaking. This paper provides an overview of the approach put forward in the FUSION project for overcoming this important limitation. Our solution combines SAWSDL-based service descriptions with service capability profiling based on OWL-DL, and automated matchmaking through DL reasoning in a semantically extended UDDI registry

    The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    Get PDF
    Background. 
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies

    Leveraging Semantic Web Service Descriptions for Validation by Automated Functional Testing

    Get PDF
    Recent years have seen the utilisation of Semantic Web Service descriptions for automating a wide range of service-related activities, with a primary focus on service discovery, composition, execution and mediation. An important area which so far has received less attention is service validation, whereby advertised services are proven to conform to required behavioural specifications. This paper proposes a method for validation of service-oriented systems through automated functional testing. The method leverages ontology-based and rule-based descriptions of service inputs, outputs, preconditions and effects (IOPE) for constructing a stateful EFSM specification. The specification is subsequently utilised for functional testing and validation using the proven Stream X-machine (SXM) testing methodology. Complete functional test sets are generated automatically at an abstract level and are then applied to concrete Web services, using test drivers created from the Web service descriptions. The testing method comes with completeness guarantees and provides a strong method for validating the behaviour of Web services
    • …
    corecore