11,648 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Actors, actions, and initiative in normative system specification

    Get PDF
    The logic of norms, called deontic logic, has been used to specify normative constraints for information systems. For example, one can specify in deontic logic the constraints that a book borrowed from a library should be returned within three weeks, and that if it is not returned, the library should send a reminder. Thus, the notion of obligation to perform an action arises naturally in system specification. Intuitively, deontic logic presupposes the concept of anactor who undertakes actions and is responsible for fulfilling obligations. However, the concept of an actor has not been formalized until now in deontic logic. We present a formalization in dynamic logic, which allows us to express the actor who initiates actions or choices. This is then combined with a formalization, presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations, permissions, and prohibitions to perform an action. The addition of actors allows us to expresswho has the responsibility to perform an action. In addition to the application of the concept of an actor in deontic logic, we discuss two other applications of actors. First, we show how to generalize an approach taken up by De Nicola and Hennessy, who eliminate from CCS in favor of internal and external choice. We show that our generalization allows a more accurate specification of system behavior than is possible without it. Second, we show that actors can be used to resolve a long-standing paradox of deontic logic, called the paradox of free-choice permission. Towards the end of the paper, we discuss whether the concept of an actor can be combined with that of an object to formalize the concept of active objects

    Matching Logic

    Full text link
    This paper presents matching logic, a first-order logic (FOL) variant for specifying and reasoning about structure by means of patterns and pattern matching. Its sentences, the patterns, are constructed using variables, symbols, connectives and quantifiers, but no difference is made between function and predicate symbols. In models, a pattern evaluates into a power-set domain (the set of values that match it), in contrast to FOL where functions and predicates map into a regular domain. Matching logic uniformly generalizes several logical frameworks important for program analysis, such as: propositional logic, algebraic specification, FOL with equality, modal logic, and separation logic. Patterns can specify separation requirements at any level in any program configuration, not only in the heaps or stores, without any special logical constructs for that: the very nature of pattern matching is that if two structures are matched as part of a pattern, then they can only be spatially separated. Like FOL, matching logic can also be translated into pure predicate logic with equality, at the same time admitting its own sound and complete proof system. A practical aspect of matching logic is that FOL reasoning with equality remains sound, so off-the-shelf provers and SMT solvers can be used for matching logic reasoning. Matching logic is particularly well-suited for reasoning about programs in programming languages that have an operational semantics, but it is not limited to this

    The foundational legacy of ASL

    Get PDF
    Abstract. We recall the kernel algebraic specification language ASL and outline its main features in the context of the state of research on algebraic specification at the time it was conceived in the early 1980s. We discuss the most significant new ideas in ASL and the influence they had on subsequent developments in the field and on our own work in particular.

    Correctness and completeness of logic programs

    Full text link
    We discuss proving correctness and completeness of definite clause logic programs. We propose a method for proving completeness, while for proving correctness we employ a method which should be well known but is often neglected. Also, we show how to prove completeness and correctness in the presence of SLD-tree pruning, and point out that approximate specifications simplify specifications and proofs. We compare the proof methods to declarative diagnosis (algorithmic debugging), showing that approximate specifications eliminate a major drawback of the latter. We argue that our proof methods reflect natural declarative thinking about programs, and that they can be used, formally or informally, in every-day programming.Comment: 29 pages, 2 figures; with editorial modifications, small corrections and extensions. arXiv admin note: text overlap with arXiv:1411.3015. Overlaps explained in "Related Work" (p. 21

    SOS rule formats for convex and abstract probabilistic bisimulations

    Full text link
    Probabilistic transition system specifications (PTSSs) in the ntμfθ/ntμxθnt \mu f\theta / nt\mu x\theta format provide structural operational semantics for Segala-type systems that exhibit both probabilistic and nondeterministic behavior and guarantee that bisimilarity is a congruence for all operator defined in such format. Starting from the ntμfθ/ntμxθnt \mu f\theta / nt\mu x\theta format, we obtain restricted formats that guarantee that three coarser bisimulation equivalences are congruences. We focus on (i) Segala's variant of bisimulation that considers combined transitions, which we call here "convex bisimulation"; (ii) the bisimulation equivalence resulting from considering Park & Milner's bisimulation on the usual stripped probabilistic transition system (translated into a labelled transition system), which we call here "probability obliterated bisimulation"; and (iii) a "probability abstracted bisimulation", which, like bisimulation, preserves the structure of the distributions but instead, it ignores the probability values. In addition, we compare these bisimulation equivalences and provide a logic characterization for each of them.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634
    • …
    corecore