961 research outputs found

    Modal mu-calculi

    Get PDF

    Cumulative subject index volumes 52-55

    Get PDF

    Determinism and looping in combinatory PDL

    Get PDF
    AbstractIn this paper some propositional modal logics of programs are considered, based on the system CPDL (Combinatory PDL)—an extension of PDL with proper names for states. These proper names are atomic formulae which are satisfied at exactly one state, in each model. Among other things (e.g., decidability and finite-model property results) a version of Streett's conjecture that his axioms do axiomatize the infinite repeating construct repeat is established with respect to CPDL

    Bounded LTL Model Checking with Stable Models

    Full text link
    In this paper bounded model checking of asynchronous concurrent systems is introduced as a promising application area for answer set programming. As the model of asynchronous systems a generalisation of communicating automata, 1-safe Petri nets, are used. It is shown how a 1-safe Petri net and a requirement on the behaviour of the net can be translated into a logic program such that the bounded model checking problem for the net can be solved by computing stable models of the corresponding program. The use of the stable model semantics leads to compact encodings of bounded reachability and deadlock detection tasks as well as the more general problem of bounded model checking of linear temporal logic. Correctness proofs of the devised translations are given, and some experimental results using the translation and the Smodels system are presented.Comment: 32 pages, to appear in Theory and Practice of Logic Programmin

    Ockhamist Propositional Dynamic Logic: a natural link between PDL and CTL

    Get PDF
    International audienceWe present a new logic called Ockhamist Propositional Dynamic Logic, OPDL, which provides a natural link between PDL and CTL*. We show that both PDL and CTL* can be polynomially embedded into OPDL in a rather simple and direct way. More generally, the semantics on which OPDL is based provides a unifying framework for making the dynamic logic family and the temporal logic family converge in a single logical framework. Decidability of the satisfiability problem for OPDL is studied in the paper

    Linear Encodings of Bounded LTL Model Checking

    Full text link
    We consider the problem of bounded model checking (BMC) for linear temporal logic (LTL). We present several efficient encodings that have size linear in the bound. Furthermore, we show how the encodings can be extended to LTL with past operators (PLTL). The generalised encoding is still of linear size, but cannot detect minimal length counterexamples. By using the virtual unrolling technique minimal length counterexamples can be captured, however, the size of the encoding is quadratic in the specification. We also extend virtual unrolling to Buchi automata, enabling them to accept minimal length counterexamples. Our BMC encodings can be made incremental in order to benefit from incremental SAT technology. With fairly small modifications the incremental encoding can be further enhanced with a termination check, allowing us to prove properties with BMC. Experiments clearly show that our new encodings improve performance of BMC considerably, particularly in the case of the incremental encoding, and that they are very competitive for finding bugs. An analysis of the liveness-to-safety transformation reveals many similarities to the BMC encodings in this paper. Using the liveness-to-safety translation with BDD-based invariant checking results in an efficient method to find shortest counterexamples that complements the BMC-based approach.Comment: Final version for Logical Methods in Computer Science CAV 2005 special issu

    Modular Verification of Biological Systems

    Get PDF
    Systems of interest in systems biology (such as metabolic pathways, signalling pathways and gene regulatory networks) often consist of a huge number of components interacting in different ways, thus exhibiting very complex behaviours. In biology, such behaviours are usually explored by means of simulation techniques applied to models defined on the basis of system observation and of hypotheses on its functioning. Model checking has also been recently applied to the analysis of biological systems. This analysis technique typically relies on a state space representation whose size, unfortunately, makes the analysis often intractable for realistic models. A method for trying to avoid the state space explosion problem is to consider a decomposition of the system, and to apply a modular verification technique. In particular, properties to be verified often concern only a small portion of the modelled system rather than the system as a whole. Hence, for each property it would be useful to be able to isolate a minimal fragment of the model that is necessary to verify such a property. In this thesis we introduce a modular verification technique in which the system of interest is described by means of an automata-based formalism, called sync-programs, that supports modular construction. Our modular verification technique is based on results of Grumberg et al.~and on their application to the theory of concurrent systems proposed by Attie and Emerson. In particular, we adapt Attie and Emerson's approach to deal with biological systems by allowing automata to synchronise by performing transitions simultaneously. Modular verification allows qualitative aspects of systems to be analysed with the guarantee that properties proved to hold in a suitable model fragment also hold in the whole model. The correctness of the verification technique is proved. The class of properties preserved is ACTL−^{-}, the universal fragment of temporal logic CTL. The preservation holds only for positive answers and negative answers are not necessarily preserved. In order to verify properties we use the NuSMV model checker, which is a well-established and efficient instrument. We provide a formal translation of sync-programs to simpler automata, which can be given as input to NuSMV. We prove the correspondence of the verification problems. We show the application of our verification technique in some biological case studies. We compare the time required to verify the property on the whole model with the time needed to verify the same property by only considering those modules which are involved in the behaviour of the system related to the property. In order to handle modelling and verification of more realistic biological scenarios, we propose also a dynamic version of our formalism. It allows entities to be created dynamically, in particular by other already running entities, as it often happens in biological systems. Moreover, multiple copies of the same entities can be present at the same time in a system. We show a correspondence of our model with Petri Nets. This has a consequence that tools developed for Petri Nets could be used also for dynamic sync-programs. Modular verification allows properties expressed as DACTL- formulae (dynamic version of ACTL-) to be veriïŹed on a portion of the model. The results of analysis of the case study of the MAP kinase cascade activated by surface and internalised EGF receptors, which consists of 143 species and 80 reactions, suggest applicability and scalability of the approach. The results raise the prospect of rendering tractable problems that are currently intractable in the verification of biological systems. In addition, we expect that the techniques developed in the thesis could be applied with profit not only to models of biological systems, but more generally to models of concurrent systems
    • 

    corecore