51,001 research outputs found

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German

    Big data and the SP theory of intelligence

    Get PDF
    This article is about how the "SP theory of intelligence" and its realisation in the "SP machine" may, with advantage, be applied to the management and analysis of big data. The SP system -- introduced in the article and fully described elsewhere -- may help to overcome the problem of variety in big data: it has potential as "a universal framework for the representation and processing of diverse kinds of knowledge" (UFK), helping to reduce the diversity of formalisms and formats for knowledge and the different ways in which they are processed. It has strengths in the unsupervised learning or discovery of structure in data, in pattern recognition, in the parsing and production of natural language, in several kinds of reasoning, and more. It lends itself to the analysis of streaming data, helping to overcome the problem of velocity in big data. Central in the workings of the system is lossless compression of information: making big data smaller and reducing problems of storage and management. There is potential for substantial economies in the transmission of data, for big cuts in the use of energy in computing, for faster processing, and for smaller and lighter computers. The system provides a handle on the problem of veracity in big data, with potential to assist in the management of errors and uncertainties in data. It lends itself to the visualisation of knowledge structures and inferential processes. A high-parallel, open-source version of the SP machine would provide a means for researchers everywhere to explore what can be done with the system and to create new versions of it.Comment: Accepted for publication in IEEE Acces

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201
    corecore