76 research outputs found

    Failure Handling in BDI Plans via Runtime Enforcement

    Get PDF
    This project CONVINCE has received funding from the European Union’s Horizon research and innovation programme G.A. n. 101070227. This publication is funded by the European Union. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or European Commission (the granting authority). Neither the European Union nor the granting authority can be held responsible for themPublisher PD

    BDI agent architectures: A survey

    Get PDF
    The BDI model forms the basis of much of the research on symbolic models of agency and agent-oriented software engineering. While many variants of the basic BDI model have been proposed in the literature, there has been no systematic review of research on BDI agent architectures in over 10 years. In this paper, we survey the main approaches to each component of the BDI architecture, how these have been realised in agent programming languages, and discuss the trade-offs inherent in each approach

    Towards Formal Modeling of Affective Agents in a BDI Architecture

    Full text link
    [EN] Affective characteristics are crucial factors that influence human behavior, and often the prevalence of either emotions or reason varies on each individual. We aim to facilitate the development of agents reasoning considering their affective characteristics. We first identify core processes in an affective BDI agent, and we integrate them into an affective agent architecture (GenIA3). These tasks include the extension of the BDI agent reasoning cycle to be compliant with the architecture, and the extension of the agent language (Jason) to support affect-based reasoning, and the adjustment of the equilibrium between the agent s affective and rational sides.This work was supported by the Generalitat Valenciana grant PROMETEOII/2013/019, and the Spanish TIN2014-55206-R project of the Ministerio de Economa y Competitividad.Alfonso Espinosa, B.; Vivancos, E.; Botti, V. (2017). Towards Formal Modeling of Affective Agents in a BDI Architecture. ACM Transactions on Internet Technology. 17(1):5:1-5:23. https://doi.org/10.1145/3001584S5:15:23171Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2014. An open architecture for affective traits in a BDI agent. In Proceedings of the 6th ECTA 2014. Part of the 6th IJCCI 2014. 320--325.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016a. Design of an Affective Intelligent Agent on GenIA. Technical Report. DSIC, UPV, Spain.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016b. Toward a Systematic Development of Affective Intelligent Agents. Technical Report. DSIC, UPV, Spain.Gordon Willard Allport. 1937. Personality: A Psychological Interpretation. Henry Holt, New York.Albert Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84, 2 (1977), 191.Cristina Battaglino, Rossana Damiano, and Leonardo Lesmo. Emotional range in value-sensitive deliberation. In Proceedings of AAMAS’13. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 769--776.Antoine Bechara, Hanna Damasio, and Antonio R Damasio. 2000. Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 3 (2000), 295--307.Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason variant of AgentSpeak (plan failure and some internal actions). In Proceedings of ECAI’10. IOS Press, Amsterdam, The Netherlands, 635--640.Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley.Tibor Bosse, Joost Broekens, João Dias, and Janneke van der Zwaan. 2014. Emotion Modeling. Springer.Scott Brave, Clifford Nass, and Kevin Hutchinson. 2005. Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Human-computer Studies 62, 2 (2005), 161--178.Jerome R. Busemeyer, Eric Dimperio, and Ryan K. Jessup. 2007. Integrating Emotional Processes Into Decision-Making Models. Oxford University Press, 29--44.Colin F Camerer, George Loewenstein, and Matthew Rabin. 2011. Advances in Behavioral Economics. Princeton University Press.Martin A Conway. 1990. Autobiographical Memory: An Introduction. Open University Press.Ronald De Sousa. 1990. The Rationality of Emotion. MIT Press.João Dias, Samuel Mascarenhas, and Ana Paiva. 2014. FAtiMA Modular: Towards an Agent Architecture with a Generic Appraisal Framework. Springer International Publishing, 44--56. DOI:http://dx.doi.org/10.1007/978-3-319-12973-0_3Magy Seif El-Nasr, John Yen, and Thomas R Ioerger. 2000. Flame—fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-agent systems 3, 3 (2000), 219--257.Hans Jürgen Eysenck. 1982. Personality, Genetics, and Behavior: Selected Papers. Praeger, Chapter Development of a Theory, 1--48.Shane Frederick. 2005. Cognitive reflection and decision making. The Journal of Economic Perspectives 19, 4 (2005), 25--42.N. H. Frijda, A. S. R. Manstead, and S. Bem. 2000. Emotions and Beliefs: How Feelings Influence Thoughts. Cambridge University Press.Nico H. Frijda. 2007. The Laws of Emotion. Lawrence Erlbaum Associates, Incorporated.Patrick Gebhard. 2005. ALMA: A layered model of affect. In Proceedings of the 4th AAMAS. ACM, New York, NY, 29--36. DOI:http://dx.doi.org/10.1145/1082473.1082478Lewis R. Goldberg and others. 1990. An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology 59, 6 (1990), 1216--1229.James J. Gross and Ross A. Thompson. 2011. Emotion regulation: Conceptual fundations. In Handbook of Emotion Regulation. Guilford Publications.JonathanY. Ito, DavidV. Pynadath, and StacyC. Marsella. 2010. Modeling self-deception within a decision-theoretic framework. AAMAS 20, 1 (2010), 3--13. DOI:http://dx.doi.org/10.1007/s10458-009-9096-7William G. Kennedy. 2012. Modelling human behaviour in agent-based models. In Agent-based Models of Geographical Systems. Springer, 167--179.Jonathan Klein, Youngme Moon, and Rosalind W. Picard. 2002. This computer responds to user frustration: Theory, design, and results. Interacting with Computers 14, 2 (2002), 119--140.Richard S. Lazarus and Susan Folkman. 1984. Stress, Appraisal, and Coping. Springer.Stacy Marsella and Jonathan Gratch. 2003. Modeling coping behavior in virtual humans: Don’t worry, be happy. In Proceedings of AAMAS’03. ACM, 313--320. DOI:http://dx.doi.org/10.1145/860575.860626Stacy C. Marsella and Jonathan Gratch. 2009. EMA: A process model of appraisal dynamics. Cognitive Systems Research 10, 1 (2009), 70--90.Stacy C. Marsella, Jonathan Gratch, and Paolo Petta. 2010. Computational models of emotion. In A Blueprint for Affective Computing: A Sourcebook and Manual. OUP Oxford, 21--46.Robert R. McCrae and Oliver P. John. 1992. An introduction to the five-factor model and its applications. Journal of Personality 60, 2 (1992), 175--215.Albert Mehrabian. 1996a. Analysis of the big-five personality factors in terms of the PAD temperament model. Australian Journal of Psychology 48, 2 (1996), 86--92. DOI:http://dx.doi.org/10.1080/00049539608259510Albert Mehrabian. 1996b. Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14, 4 (1996), 261--292. DOI:http://dx.doi.org/10.1007/BF02686918Albert Mehrabian and James A. Russell. 1974. An Approach to Environmental Psychology. MIT Press.John-Jules Ch. Meyer. 2006. Reasoning about emotional agents. International Journal of Intelligent Systems 21, 6 (June 2006), 601--619. DOI:http://dx.doi.org/10.1002/int.v21:6Katherine Nelson. 1993. The psychological and social origins of autobiographical memory. Psychological Science 4, 1 (1993), 7--14.Magalie Ochs, David Sadek, and Catherine Pelachaud. 2012. A formal model of emotions for an empathic rational dialog agent. AAMAS 24, 3 (2012), 410--440. DOI:http://dx.doi.org/10.1007/s10458-010-9156-zAndrew Ortony. 2003. On making believable emotional agents believable. In Emotions in Humans and Artifacts, R. P. Trapple, P. Petta, and S. Payer (Eds.). MIT Press, Chapter 6, 189--212.Andrew Ortony, Gerald L. Clore, and Allan Collins. 1988. The Cognitive Structure of Emotions. Cambridge University Press.Rosalind W. Picard and Karen K. Liu. 2007. Relative subjective count and assessment of interruptive technologies applied to mobile monitoring of stress. International Journal of Human-Computer Studies 65, 4 (2007), 361--375.César F. Pimentel and Maria R. Cravo. 2005. Affective revision. In Progress in Artificial Intelligence, Carlos Bento, Amílcar Cardoso, and Gaël Dias (Eds.). LNCS, Vol. 3808. Springer Berlin, 115--126.Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19. Aarhus University.Anand S. Rao. 1996. Agentspeak(L): BDI agents speak out in a logical computable language. In Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Rudy Van Hoe (Ed.). Eindhoven, The Netherlands.Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks, Emiliano Lorini, and J-JC Meyer. 2013. Computational modeling of emotion: Toward improving the inter- and intradisciplinary exchange. IEEE Transactions on Affective Computing 4, 3 (2013), 246--266.Luis-Felipe Rodríguez and Félix Ramos. 2014. Development of computational models of emotions for autonomous agents: A review. Cognitive Computation 6, 3 (2014), 351--375. DOI:http://dx.doi.org/10.1007/s12559-013-9244-xIra J. Roseman. 2001. A Model of Appraisal in the Emotion System: Integrating Theory, Research, and Applications. Oxford University Press, 68--91.James A. Russell. 2003. Core affect and the psychological construction of emotion. Psychological Review 110, 1 (2003), 145--172.Klaus R. Scherer. 2001. Appraisal considered as a process of multilevel sequential checking. Appraisal Processes in Emotion: Theory, Methods, Research 92 (2001), 120.Norbert Schwarz. 2000. Emotion, cognition, and decision making. Cognition 8 Emotion 14, 4 (2000), 433--440.Leila Selimbegović, Isabelle Régner, Pascal Huguet, and Armand Chatard. 2015. On the power of autobiographical memories: From threat and challenge appraisals to actual behaviour. Memory (2015), 1--8.Martin Sewell. 2010. Emotions help solve the prisoner’s dilemma. In Proceedings of the Behavioural Finance Working Group Conference: Fairness, Trust and Emotions in Finance, London. 1--2.Craig A. Smith and Richard S. Lazarus. 1990. Emotion and adaptation. In Handbook of Personality: Theory and Research, Lawrence A. Pervin (Ed.). 609--637.Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2009. A formal model of emotion-based action tendency for intelligent agents. In Proceedings of EPIA’09. Springer-Verlag, Berlin, 174--186. DOI:http://dx.doi.org/10.1007/978-3-642-04686-5_15Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2012. A formal model of emotion triggers: An approach for BDI agents. Synthese 185 (2012), 83--129. DOI:http://dx.doi.org/10.1007/s11229-011-0004-8AW Tucker. 1983. The mathematics of tucker: A sampler. The Two-Year College Mathematics Journal 14, 3 (1983), 228--232.Renata Vieira, Álvaro F. Moreira, Michael Wooldridge, and Rafael H. Bordini. 2007. On the formal semantics of speech-act based communication in an agent-oriented programming language. J. Artif. Intell. Res. (JAIR) 29 (2007), 221--267.G. Weiss. 2013. Multiagent Systems. MIT Press

    Task Suspension in Agent Systems

    Get PDF
    We discuss the similarity of a recent approach to task suspension in agent programming languages with an earlier approach to formalising preemption using a class of Petri nets, called M-nets. We argue that the theory of agent programming would benefit from adopting certain features of the Petri-net approach, and thus making further results for Petri nets applicable in the agent domain

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs

    A BDI agent programming language with failure handling, declarative goals, and planning

    Get PDF
    Agents are an important technology that have the potential to take over contemporary methods for analysing, designing, and implementing complex software. The Belief- Desire-Intention (BDI) agent paradigm has proven to be one of the major approaches to intelligent agent systems, both in academia and in industry. Typical BDI agent-oriented programming languages rely on user-provided ''plan libraries'' to achieve goals, and online context sensitive subgoal selection and expansion. These allow for the development of systems that are extremely flexible and responsive to the environment, and as a result, well suited for complex applications with (soft) real-time reasoning and control requirements. Nonetheless, complex decision making that goes beyond, but is compatible with, run-time context-dependent plan selection is one of the most natural and important next steps within this technology. In this paper we develop a typical BDI-style agent-oriented programming language that enhances usual BDI programming style with three distinguished features: declarative goals, look-ahead planning, and failure handling. First, an account that mixes both procedural and declarative aspects of goals is necessary in order to reason about important properties of goals and to decouple plans from what these plans are meant to achieve. Second, lookahead deliberation about the effects of one choice of expansion over another is clearly desirable or even mandatory in many circumstances so as to guarantee goal achievability and to avoid undesired situations. Finally, a failure handling mechanism, suitably integrated with both declarative goals and planning, is required in order to model an adequate level of commitment to goals, as well as to be consistent with most real BDI implemented systems

    Managing different sources of uncertainty in a BDI framework in a principled way with tractable fragments

    Get PDF
    The Belief-Desire-Intention (BDI) architecture is a practical approach for modelling large-scale intelligent systems. In the BDI setting, a complex system is represented as a network of interacting agents – or components – each one modelled based on its beliefs, desires and intentions. However, current BDI implementations are not well-suited for modelling more realistic intelligent systems which operate in environments pervaded by different types of uncertainty. Furthermore, existing approaches for dealing with uncertainty typically do not offer syntactical or tractable ways of reasoning about uncertainty. This complicates their integration with BDI implementations, which heavily rely on fast and reactive decisions. In this paper, we advance the state-of-the-art w.r.t. handling different types of uncertainty in BDI agents. The contributions of this paper are, first, a new way of modelling the beliefs of an agent as a set of epistemic states. Each epistemic state can use a distinct underlying uncertainty theory and revision strategy, and commensurability between epistemic states is achieved through a stratification approach. Second, we present a novel syntactic approach to revising beliefs given unreliable input. We prove that this syntactic approach agrees with the semantic definition, and we identify expressive fragments that are particularly useful for resource-bounded agents. Third, we introduce full operational semantics that extend Can, a popular semantics for BDI, to establish how reasoning about uncertainty can be tightly integrated into the BDI framework. Fourth, we provide comprehensive experimental results to highlight the usefulness and feasibility of our approach, and explain how the generic epistemic state can be instantiated into various representations
    • …
    corecore