587 research outputs found

    DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion

    Full text link
    In this paper we propose a convolutional neural network that is designed to upsample a series of sparse range measurements based on the contextual cues gleaned from a high resolution intensity image. Our approach draws inspiration from related work on super-resolution and in-painting. We propose a novel architecture that seeks to pull contextual cues separately from the intensity image and the depth features and then fuse them later in the network. We argue that this approach effectively exploits the relationship between the two modalities and produces accurate results while respecting salient image structures. We present experimental results to demonstrate that our approach is comparable with state of the art methods and generalizes well across multiple datasets.Comment: 8 page

    Learning Depth via Leveraging Semantics: Self-supervised Monocular Depth Estimation with Both Implicit and Explicit Semantic Guidance

    Full text link
    Self-supervised depth estimation has made a great success in learning depth from unlabeled image sequences. While the mappings between image and pixel-wise depth are well-studied in current methods, the correlation between image, depth and scene semantics, however, is less considered. This hinders the network to better understand the real geometry of the scene, since the contextual clues, contribute not only the latent representations of scene depth, but also the straight constraints for depth map. In this paper, we leverage the two benefits by proposing the implicit and explicit semantic guidance for accurate self-supervised depth estimation. We propose a Semantic-aware Spatial Feature Alignment (SSFA) scheme to effectively align implicit semantic features with depth features for scene-aware depth estimation. We also propose a semantic-guided ranking loss to explicitly constrain the estimated depth maps to be consistent with real scene contextual properties. Both semantic label noise and prediction uncertainty is considered to yield reliable depth supervisions. Extensive experimental results show that our method produces high quality depth maps which are consistently superior either on complex scenes or diverse semantic categories, and outperforms the state-of-the-art methods by a significant margin

    Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning

    Full text link
    This paper presents KeypointNet, an end-to-end geometric reasoning framework to learn an optimal set of category-specific 3D keypoints, along with their detectors. Given a single image, KeypointNet extracts 3D keypoints that are optimized for a downstream task. We demonstrate this framework on 3D pose estimation by proposing a differentiable objective that seeks the optimal set of keypoints for recovering the relative pose between two views of an object. Our model discovers geometrically and semantically consistent keypoints across viewing angles and instances of an object category. Importantly, we find that our end-to-end framework using no ground-truth keypoint annotations outperforms a fully supervised baseline using the same neural network architecture on the task of pose estimation. The discovered 3D keypoints on the car, chair, and plane categories of ShapeNet are visualized at http://keypointnet.github.io/

    SVDistNet: Self-Supervised Near-Field Distance Estimation on Surround View Fisheye Cameras

    Full text link
    A 360{\deg} perception of scene geometry is essential for automated driving, notably for parking and urban driving scenarios. Typically, it is achieved using surround-view fisheye cameras, focusing on the near-field area around the vehicle. The majority of current depth estimation approaches focus on employing just a single camera, which cannot be straightforwardly generalized to multiple cameras. The depth estimation model must be tested on a variety of cameras equipped to millions of cars with varying camera geometries. Even within a single car, intrinsics vary due to manufacturing tolerances. Deep learning models are sensitive to these changes, and it is practically infeasible to train and test on each camera variant. As a result, we present novel camera-geometry adaptive multi-scale convolutions which utilize the camera parameters as a conditional input, enabling the model to generalize to previously unseen fisheye cameras. Additionally, we improve the distance estimation by pairwise and patchwise vector-based self-attention encoder networks. We evaluate our approach on the Fisheye WoodScape surround-view dataset, significantly improving over previous approaches. We also show a generalization of our approach across different camera viewing angles and perform extensive experiments to support our contributions. To enable comparison with other approaches, we evaluate the front camera data on the KITTI dataset (pinhole camera images) and achieve state-of-the-art performance among self-supervised monocular methods. An overview video with qualitative results is provided at https://youtu.be/bmX0UcU9wtA. Baseline code and dataset will be made public.Comment: To be published at IEEE Transactions on Intelligent Transportation System

    Semi-Supervised Semantic Matching

    Full text link
    Convolutional neural networks (CNNs) have been successfully applied to solve the problem of correspondence estimation between semantically related images. Due to non-availability of large training datasets, existing methods resort to self-supervised or unsupervised training paradigm. In this paper we propose a semi-supervised learning framework that imposes cyclic consistency constraint on unlabeled image pairs. Together with the supervised loss the proposed model achieves state-of-the-art on a benchmark semantic matching dataset.Comment: Accepted to ECCVW (GMDL) 201

    Semantic-Guided Representation Enhancement for Self-supervised Monocular Trained Depth Estimation

    Full text link
    Self-supervised depth estimation has shown its great effectiveness in producing high quality depth maps given only image sequences as input. However, its performance usually drops when estimating on border areas or objects with thin structures due to the limited depth representation ability. In this paper, we address this problem by proposing a semantic-guided depth representation enhancement method, which promotes both local and global depth feature representations by leveraging rich contextual information. In stead of a single depth network as used in conventional paradigms, we propose an extra semantic segmentation branch to offer extra contextual features for depth estimation. Based on this framework, we enhance the local feature representation by sampling and feeding the point-based features that locate on the semantic edges to an individual Semantic-guided Edge Enhancement module (SEEM), which is specifically designed for promoting depth estimation on the challenging semantic borders. Then, we improve the global feature representation by proposing a semantic-guided multi-level attention mechanism, which enhances the semantic and depth features by exploring pixel-wise correlations in the multi-level depth decoding scheme. Extensive experiments validate the distinct superiority of our method in capturing highly accurate depth on the challenging image areas such as semantic category borders and thin objects. Both quantitative and qualitative experiments on KITTI show that our method outperforms the state-of-the-art methods

    Geo-Supervised Visual Depth Prediction

    Full text link
    We propose using global orientation from inertial measurements, and the bias it induces on the shape of objects populating the scene, to inform visual 3D reconstruction. We test the effect of using the resulting prior in depth prediction from a single image, where the normal vectors to surfaces of objects of certain classes tend to align with gravity or be orthogonal to it. Adding such a prior to baseline methods for monocular depth prediction yields improvements beyond the state-of-the-art and illustrates the power of gravity as a supervisory signal.Comment: ICRA 2019, RA-L 201

    Self-Supervised Monocular Depth Estimation: Solving the Dynamic Object Problem by Semantic Guidance

    Full text link
    Self-supervised monocular depth estimation presents a powerful method to obtain 3D scene information from single camera images, which is trainable on arbitrary image sequences without requiring depth labels, e.g., from a LiDAR sensor. In this work we present a new self-supervised semantically-guided depth estimation (SGDepth) method to deal with moving dynamic-class (DC) objects, such as moving cars and pedestrians, which violate the static-world assumptions typically made during training of such models. Specifically, we propose (i) mutually beneficial cross-domain training of (supervised) semantic segmentation and self-supervised depth estimation with task-specific network heads, (ii) a semantic masking scheme providing guidance to prevent moving DC objects from contaminating the photometric loss, and (iii) a detection method for frames with non-moving DC objects, from which the depth of DC objects can be learned. We demonstrate the performance of our method on several benchmarks, in particular on the Eigen split, where we exceed all baselines without test-time refinement.Comment: ECCV 202

    Geometric Unsupervised Domain Adaptation for Semantic Segmentation

    Full text link
    Simulators can efficiently generate large amounts of labeled synthetic data with perfect supervision for hard-to-label tasks like semantic segmentation. However, they introduce a domain gap that severely hurts real-world performance. We propose to use self-supervised monocular depth estimation as a proxy task to bridge this gap and improve sim-to-real unsupervised domain adaptation (UDA). Our Geometric Unsupervised Domain Adaptation method (GUDA) learns a domain-invariant representation via a multi-task objective combining synthetic semantic supervision with real-world geometric constraints on videos. GUDA establishes a new state of the art in UDA for semantic segmentation on three benchmarks, outperforming methods that use domain adversarial learning, self-training, or other self-supervised proxy tasks. Furthermore, we show that our method scales well with the quality and quantity of synthetic data while also improving depth prediction

    Dense Depth Posterior (DDP) from Single Image and Sparse Range

    Full text link
    We present a deep learning system to infer the posterior distribution of a dense depth map associated with an image, by exploiting sparse range measurements, for instance from a lidar. While the lidar may provide a depth value for a small percentage of the pixels, we exploit regularities reflected in the training set to complete the map so as to have a probability over depth for each pixel in the image. We exploit a Conditional Prior Network, that allows associating a probability to each depth value given an image, and combine it with a likelihood term that uses the sparse measurements. Optionally we can also exploit the availability of stereo during training, but in any case only require a single image and a sparse point cloud at run-time. We test our approach on both unsupervised and supervised depth completion using the KITTI benchmark, and improve the state-of-the-art in both
    • …
    corecore