45 research outputs found

    Semantically Secure Lattice Codes for Compound MIMO Channels

    Get PDF
    We consider compound multi-input multi-output (MIMO) wiretap channels where minimal channel state information at the transmitter (CSIT) is assumed. Code construction is given for the special case of isotropic mutual information, which serves as a conservative strategy for general cases. Using the flatness factor for MIMO channels, we propose lattice codes universally achieving the secrecy capacity of compound MIMO wiretap channels up to a constant gap (measured in nats) that is equal to the number of transmit antennas. The proposed approach improves upon existing works on secrecy coding for MIMO wiretap channels from an error probability perspective, and establishes information theoretic security (in fact semantic security). We also give an algebraic construction to reduce the code design complexity, as well as the decoding complexity of the legitimate receiver. Thanks to the algebraic structures of number fields and division algebras, our code construction for compound MIMO wiretap channels can be reduced to that for Gaussian wiretap channels, up to some additional gap to secrecy capacity.Comment: IEEE Trans. Information Theory, to appea

    Achieving capacity and security in wireless communications with lattice codes

    Get PDF
    Based on lattice Gaussian distributions and ideal lattices, we present a unified framework of lattice coding to achieve the channel capacity and secrecy capacity of wireless channels in the presence of Gaussian noise. The standard additive white Gaussian-noise (AWGN) channel, block fading channel, and multi-input multi-output (MIMO) fading channel are considered, which form a hierarchy of increasingly challenging problems in coding theory. To achieve channel capacity, we apply Gaussian shaping to a suitably defined good lattice for channel coding. To achieve secrecy capacity, we use a secrecy-good lattice nested with a coding lattice

    Algebraic lattice Codes achieve the capacity of the compound block-fading channel

    No full text
    We propose a lattice coding scheme that achieves the capacity of the compound block-fading channel. Our lattice construction exploits the multiplicative structure of number fields and their group of units to absorb ill-conditioned channel realizations. To shape the constellation, a discrete Gaussian distribution over the lattice points is applied. A by-product of our results is a refined analysis of the probability of error of the lattice Gaussian distribution in the AWGN channel

    Physical Layer Security for Next Generation Wireless Systems

    Get PDF

    Polar Codes and Polar Lattices for Independent Fading Channels

    Get PDF
    Abstract In this paper, we design polar codes and polar lattices for i.i.d. fading channels when the channel state information is only available to the receiver. For the binary input case, we propose a new design of polar codes through single-stage polarization to achieve the ergodic capacity. For the non-binary input case, polar codes are further extended to polar lattices to achieve the egodic Poltyrev capacity, i.e., the capacity without power limit. When the power constraint is taken into consideration, we show that polar lattices with lattice Gaussian shaping achieve the egodic capacity of fading channels. The coding and shaping are both explicit, and the overall complexity of encoding and decoding is O(N log 2 N )

    Semantic and effective communications

    Get PDF
    Shannon and Weaver categorized communications into three levels of problems: the technical problem, which tries to answer the question "how accurately can the symbols of communication be transmitted?"; the semantic problem, which asks the question "how precisely do the transmitted symbols convey the desired meaning?"; the effectiveness problem, which strives to answer the question "how effectively does the received meaning affect conduct in the desired way?". Traditionally, communication technologies mainly addressed the technical problem, ignoring the semantics or the effectiveness problems. Recently, there has been increasing interest to address the higher level semantic and effectiveness problems, with proposals ranging from semantic to goal oriented communications. In this thesis, we propose to formulate the semantic problem as a joint source-channel coding (JSCC) problem and the effectiveness problem as a multi-agent partially observable Markov decision process (MA-POMDP). As such, for the semantic problem, we propose DeepWiVe, the first-ever end-to-end JSCC video transmission scheme that leverages the power of deep neural networks (DNNs) to directly map video signals to channel symbols, combining video compression, channel coding, and modulation steps into a single neural transform. We also further show that it is possible to use predefined constellation designs as well as secure the physical layer communication against eavesdroppers for deep learning (DL) driven JSCC schemes, making such schemes much more viable for deployment in the real world. For the effectiveness problem, we propose a novel formulation by considering multiple agents communicating over a noisy channel in order to achieve better coordination and cooperation in a multi-agent reinforcement learning (MARL) framework. Specifically, we consider a MA-POMDP, in which the agents, in addition to interacting with the environment, can also communicate with each other over a noisy communication channel. The noisy communication channel is considered explicitly as part of the dynamics of the environment, and the message each agent sends is part of the action that the agent can take. As a result, the agents learn not only to collaborate with each other but also to communicate "effectively'' over a noisy channel. Moreover, we show that this framework generalizes both the semantic and technical problems. In both instances, we show that the resultant communication scheme is superior to one where the communication is considered separately from the underlying semantic or goal of the problem.Open Acces

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    corecore