3,842 research outputs found

    The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    Get PDF
    Background. 
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community.

Description. 
SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers.

Conclusions.
SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behavior we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    The CIARD RING, an infrastructure for interoperability of agricultural research information services

    Get PDF
    Creating integrated information services in agriculture giving access and adding value to information residing in distributed sources remains a major challenge. In distributed architectures, value added services by definition interface several information sources / services. Therefore value added services cannot be built without an awareness of what others have done: which sources are available, how to tap into them, how to exploit their semantics. The Coherence in Information for Agricultural Research for Development (CIARD) Routemap to Information Nodes and Gateways (RING) is a portal offering an interlinked registry of existing information services in agriculture. The CIARD RING covers both information services and sources: in nowadays information architectures, the distinction between the two is very fluid. In the RING, the definition of "service" includes any form of providing information from one server instance (website, mail server, web services, XML archive...) to many clients (browsers, email clients, news readers, harvesters...) The services registered in the RING are described in details and categorized according to criteria that are relevant to the use of the service and its interoperability. The RING categorizes and interlinks the featured services according to criteria such as: standards adopted, vocabulary used, technology used, protocols implemented, level of interoperability etc. In addition, it features detailed instructions on how the registered services can be "interoperated". The vision is that the RING will become the common global technical platform for the community of agricultural information professionals for accessing, sharing and exchanging information through web services. This paper describes how the RING provides an infrastructure for enhancing interoperability of information sources and thus paves the way towards better accessibility of information through value-added and better targeted services

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    Extracting tennis statistics from wireless sensing environments

    Get PDF
    Creating statistics from sporting events is now widespread with most eorts to automate this process using various sensor devices. The problem with many of these statistical applications is that they require proprietary applications to process the sensed data and there is rarely an option to express a wide range of query types. Instead, applications tend to contain built-in queries with predened outputs. In the research presented in this paper, data from a wireless network is converted to a structured and highly interoperable format to facilitate user queries by expressing high level queries in a standard database language and automatically generating the results required by coaches

    Semantic Modeling of Analytic-based Relationships with Direct Qualification

    Full text link
    Successfully modeling state and analytics-based semantic relationships of documents enhances representation, importance, relevancy, provenience, and priority of the document. These attributes are the core elements that form the machine-based knowledge representation for documents. However, modeling document relationships that can change over time can be inelegant, limited, complex or overly burdensome for semantic technologies. In this paper, we present Direct Qualification (DQ), an approach for modeling any semantically referenced document, concept, or named graph with results from associated applied analytics. The proposed approach supplements the traditional subject-object relationships by providing a third leg to the relationship; the qualification of how and why the relationship exists. To illustrate, we show a prototype of an event-based system with a realistic use case for applying DQ to relevancy analytics of PageRank and Hyperlink-Induced Topic Search (HITS).Comment: Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015

    Combining SAWSDL, OWL-DL and UDDI for Semantically Enhanced Web Service Discovery

    Get PDF
    UDDI registries are included as a standard offering within the product suite of any major SOA vendor, serving as the foundation for establishing design-time and run-time SOA governance. Despite the success of the UDDI specification and its rapid uptake by the industry, the capabilities of its offered service discovery facilities are rather limited. The lack of machine-understandable semantics in the technical specifications and classification schemes used for retrieving services, prevent UDDI registries from supporting fully automated and thus truly effective service discovery. This paper presents the implementation of a semantically-enhanced registry that builds on the UDDI specification and augments its service publication and discovery facilities to overcome the aforementioned limitations. The proposed solution combines the use of SAWSDL for creating semantically annotated descriptions of service interfaces and the use of OWL-DL for modelling service capabilities and for performing matchmaking via DL reasoning

    Web Service Discovery in a Semantically Extended UDDI Registry: the Case of FUSION

    Get PDF
    Service-oriented computing is being adopted at an unprecedented rate, making the effectiveness of automated service discovery an increasingly important challenge. UDDI has emerged as a de facto industry standard and fundamental building block within SOA infrastructures. Nevertheless, conventional UDDI registries lack means to provide unambiguous, semantically rich representations of Web service capabilities, and the logic inference power required for facilitating automated service discovery. To overcome this important limitation, a number of approaches have been proposed towards augmenting Web service discovery with semantics. This paper discusses the benefits of semantically extending Web service descriptions and UDDI registries, and presents an overview of the approach put forward in project FUSION, towards semantically-enhanced publication and discovery of services based on SAWSDL
    corecore